Skip to main content
Log in

Oleoresin glands in copaíba (Copaifera trapezifolia Hayne: Leguminosae), a Brazilian rainforest tree

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Although studies have addressed the chemical analysis and the biological activity of oleoresin in species of Copaifera, the cellular mechanisms of oleoresin production, storage, and release have rarely been investigated. This study detailed the distribution, ontogeny, and ultrastructure of secretory cavities and canals distributed in leaf and stem, respectively, of Copaifera trapezifolia, a Brazilian species included in a plant group of great economic interest. Axillary vegetative buds, leaflets, and portions of stem in primary and secondary growth were collected and processed in order to study the anatomy, histolocalization of substances, and ultrastructure. Secretory cavities are observed in the foliar blade and secretory canals in the petiolule and stem. They are made up of a uniseriate epithelium delimiting an isodiametric or elongated lumen. Biseriate epithelium is rarely observed and is a novelty for Leguminosae. Cavities and canals originate from ground meristem cells and the lumen is formed by schizogenesis. The content of the cavities and canals of both stem and leaf is oily and resinous, which suggests that the oleoresin could be extracted from the leaf instead of the stem. Phenolic compounds are also detected in the epithelial cell cytoplasm. Cavities and canals in the beginning of developmental stages have polarized epithelial cells. The cytoplasm is rich in smooth and rough endoplasmic reticula connected to vesicles or plastids. Smooth and rough endoplasmic reticulum and plastids were found to be predominant in the epithelial cells of the secretory cavities and canals of C. trapezifolia. Such features testify the quantities of oleoresin found in the lumen and phenolic compounds in the epithelial cell cytoplasm of these glands. Other studies employing techniques such as correlative light electron microscopy could show the vesicle traffic and the compartmentalization of the produced substances in such glands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alencar JC (1982) Estudos silviculturais de uma população natural de Copaifera multijuga Hayne—Leguminosae, na Amazônia Central. 2—Produção de óleo-resina. Acta Amaz 12:79–82

    Google Scholar 

  • Benayoun J, Fahn A (1979) Intracellular transport and elimination of resin from epithelial duct-cells of Pinus halepensis. Ann Bot 43:179–181

    Google Scholar 

  • Braga WF, Rezende CM, Antunes OAC (1998) Terpenoids from Copaifera cearensis. Phytochemistry 49:263–264

    Article  CAS  Google Scholar 

  • Fahn A (1979) Secretory tissues in plants. Academic Press, London

    Google Scholar 

  • Fahn A (1988) Secretory tissues in vascular plants. New Phytol 108:229–257

    Article  Google Scholar 

  • Falcão HS, Lima IO, Santos VL, Dantas HF, Diniz MFFM, Barbosa-Filho JM, Batista LM (2005) Review of the plants with anti-inflammatory activity studied in Brazil. Rev Bras Farmacogn 15:381–391

    Article  Google Scholar 

  • Joel DM, Fahn A (1980a) Ultrastructure of the resin ducts of Mangifera indica L. (Anacardiaceae). 1. Differentiation and senescence of the shoot ducts. Ann Bot 46:225–233

    Google Scholar 

  • Joel DM, Fahn A (1980b) Ultrastructure of the resin ducts of Mangifera indica L. (Anacardiaceae). 2. Resin secretion in the primary stem ducts. Ann Bot 46:779–783

    Google Scholar 

  • Joel DM, Fahn A (1980c) Ultrastructure of the resin ducts of Mangifera indica L. (Anacardiaceae). 3. Secretion of the protein–polysaccharide mucilage in the fruit. Ann Bot 46:785–790

    Google Scholar 

  • Johansen DA (1940) Plant microtechnique. McGraw-Hill, New York

    Google Scholar 

  • Karnovsky MJ (1965) A formaldehyde–glutaraldehyde fixative of high osmolarity for use in electron microscopy. J Cell Biol 27:137A–138A

    Google Scholar 

  • Kraus JE, Arduin M (1997) Manual básico de métodos em morfologia vegetal. Seropédica, Rio de Janeiro

  • Lee YT, Langenheim JH (1975) A systematic revision of the genus Hymenaea (Leguminosae; Caesalpinioideae; Detarieae). Univ Calif Publ Bot 69:1–109

    Google Scholar 

  • Lersten NR, Curtis JD (1986) Tubular cavities in white snakeroot, Eupatorium rugosum (Asteraceae). Am J Bot 73:1016–1021

    Article  Google Scholar 

  • Lersten NR, Curtis JD (1994) Leaf anatomy in Caesalpinia and Hoffmannseggia (Leguminosae, Caesalpinioideae) with emphasis on secretory structures. Plant Syst Evol 192:231–255

    Article  Google Scholar 

  • Lersten NR, Curtis JD (1996) Survey of leaf anatomy, especially secretory structures, of tribe Caesalpinieae (Leguminosae, Caesalpinioideae). Plant Syst Evol 200:21–39

    Article  Google Scholar 

  • Lewis GP, Schrire B, Mackinder B, Lock M (2005) Legumes of the world. Royal Botanic Gardens, Kew

    Google Scholar 

  • Marcati CR, Angyalossy-Alfonso V, Benetati L (2001) Anatomia comparada do lenho de Copaifera langsdorffii Desf. (Leguminosae–Caesalpinoideae) de floresta e cerradão. Rev Bras Bot 24:311–320

    Article  Google Scholar 

  • May PH, Barata LES (2004) Rosewood exploitation in the Brazilian Amazon: options for sustainable production. Econ Bot 58:257–265

    Article  Google Scholar 

  • Monteiro WR, Giulietti AM, Mazzoni SC, Castro MM (1979) Hairs on reproductive organs of some Eriocaulaceae and their taxonomic significance. Bol Bot Univ de São Paulo 7:43–59

    Google Scholar 

  • Monteiro WR, Fahn A, Caldeira W, Castro MM (1999) Ultrastructural observations on the foliar secretory cavities of Porophyllum lanceolatum DC. (Asteraceae). Flora 194:113–126

    Google Scholar 

  • Monti H, Tiliacos N, Faure R (1999) Copaiba oil: isolation and characterization of a new diterpenoid with the dinorlabdane skeleton. Phytochemistry 51:1013–1015

    Article  CAS  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  PubMed  CAS  Google Scholar 

  • Paiva EAS, Machado SR (2007) Structural and ultrastructural aspects of ontogenesis and differentiation of resin secretory cavities in Hymenaea stignocarpa (Fabaceae–Caesalpinoideae) leaves. Nord J Bot 24:423–431

    Article  Google Scholar 

  • Paiva EAS, Oliveira DMT (2004) Ontogenesis of the fruit pulp layer of Hymenaea stigonocarpa (Fabaceae: Caesalpinioideae). Aust J Bot 52:677–683

    Article  Google Scholar 

  • Paiva EAS, Oliveira DMT, Machado SR (2008) Anatomy and ontogeny of the pericarp of Pterodon emarginatus Vogel (Fabaceae, Faboideae), with emphasis on secretory ducts. An Acad Bras Ciênc 80:455–465

    Article  PubMed  Google Scholar 

  • Parham RA, Kaustinen HM (1977) On the site of tannin synthesis in plant cells. Bot Gaz 138:465–467

    Article  Google Scholar 

  • Reserva da Biosfera da Mata Atlântica (RBMA) (2003) http://www.rbma.org.br/anuario/mata_01_sintese.asp. Accessed 24 November 2008

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues TM, Machado SR (2009) Developmental and structural features of secretory canals in root and shoot wood of Copaifera langsdorffii Desf. (Leguminosae–Caesalpinioideae). Trees 23:1013–1018

    Article  Google Scholar 

  • Rodrigues TM, Teixeira SP, Machado SR (2011) The oleoresin secretory system in seedlings and adult plants of copaíba (Copaifera langsdorffii Desf., Leguminosae–Caesalpinioideae). Flora 206:585–594. doi:10.1016/j.flora.2010.10.002

    Article  Google Scholar 

  • Santos SC, Mello JCP (2007) Taninos. In: Simões CMO, Schenkel EP, Gosmann G, Mello JCP, Mentz LA, Petrovick PR (eds) Farmacognosia: da planta ao medicamento, 6th edn. Editora da UFRGS, Porto Alegre

  • Sartori ALB, Tozzi AMGA (2002) Comparative leaflet anatomy in Myrocarpus Allemão, Myroxylon L.f. and Myrospermum Jacq. (Leguminosae–Papilionoideae–Sophoreae) species. Bot J Linn Soc 140:249–259

    Article  Google Scholar 

  • Sass JE (1951) Botanical microtechnique. Iowa State College Press, Ames

    Google Scholar 

  • Staehelin LA (1997) The plant ER: a dynamic organelle composed of a large number of discrete functional domains. Plant J 11:1151–1165

    Article  PubMed  CAS  Google Scholar 

  • Teixeira SP, Gabrielli AC (2000) Anatomia do eixo vegetativo de Dahlstedtia pinnata (Benth.) Malme e D. pentaphylla (Taub.) Burk. (Leguminosae, Papilionoideae). Braz J Bot 23:1–11

    Google Scholar 

  • Teixeira SP, Rocha JF (2009) Oil glands in the Neotropical genus Dahlstedtia Malme (Leguminosae, Papilionoideae, Millettieae). Braz J Bot 32:33–40

    Google Scholar 

  • Teixeira SP, Castro MM, Tozzi AMGA (2000) Secretory cavities and pellucid dots in leaflets of Lonchocarpus (Leguminosae, Papilionoideae, Millettieae). Plant Syst Evol 221:61–68

    Article  Google Scholar 

  • Turner GW (1986) Comparative development of secretory cavities in the tribes Amorpheae and Psoraleeae (Leguminosae: Papilionoideae). Am J Bot 73:1178–1192

    Article  Google Scholar 

  • Turner GW (1999) A brief history of the lysigenous gland hypothesis. Bot Rev 65:76–88

    Article  Google Scholar 

  • Veiga VF Jr, Pinto AC (2002) O Gênero Copaifera L. Quim Nova 25:273–286

    Article  Google Scholar 

  • Veiga VF Jr, Zunino L, Calixto JB, Patitucci ML, Pinto AC (2001) Phytochemical and antioedematogenic studies of commercial copaíba oils available in Brazil. Phytother Res 15:476–480

    Article  PubMed  CAS  Google Scholar 

  • Veiga VF Jr, Andrade MA Jr, Ferraz IDK, Christo HB, Pinto AC (2007) Constituintes das sementes de Copaifera officinalis L. Acta Amaz 37:123–126

    CAS  Google Scholar 

  • Vieira RC, Delpetre PG, Leitão GG, Leitão SG (2001) Anatomical and chemical analyses of leaf secretory cavities of Rustia formosa (Rubiaceae). Am J Bot 88:2151–2156

    Article  PubMed  CAS  Google Scholar 

  • Watson ML (1958) Staining of tissue sections for electron microscopy with heavy metals. J Biophys Biochem Cytol 4:475–478

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank José Augusto Maulin, Maria Dolores S. Ferreira (Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, FMRP/USP), and Edimárcio da Silva Campos (FCFRP/USP) for the technical assistance, Karen Lúcia Gama De Toni and Massimo Giuseppe Bovini (JBRJ) for the field support in the Botanical Garden of Rio de Janeiro, Dewey Litwiller (University of Saskatchewan, Saskatoon, Saskatchewan, Canada) for the English language revision, and Thaís Cury de Barros for the drawings. The electron microscopy work was carried out at Laboratório de Microscopia Eletrônica of Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo. This study was supported by FAPESP (process number 2008/55434-7), CAPES, and CNPq (process number 301960/2009-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone de Pádua Teixeira.

Additional information

Communicated by M. Shane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milani, J.F., Rocha, J.F. & de Pádua Teixeira, S. Oleoresin glands in copaíba (Copaifera trapezifolia Hayne: Leguminosae), a Brazilian rainforest tree. Trees 26, 769–775 (2012). https://doi.org/10.1007/s00468-011-0642-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-011-0642-y

Keywords

Navigation