Skip to main content
Log in

Wood trait-environment relationships in a secondary forest succession in South-East China

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Concerning forest communities, not much is known about the relationship between wood traits and environmental conditions. Using a succession series, we analyzed which wood anatomical traits were correlated with successional stage and asked which traits and which environmental factors were particularly important for the trait–environment relationship. An extensive dataset of 11 groups of wood traits was generated for 93 woody species that occurred in 27 permanent plots in a secondary subtropical secondary broadleaved forest in Zhejiang Province (SE-China) and subjected to Fourth Corner Analyses, using different permutation models. We encountered a strong relationship of wood porosity, visibility of growth rings and vessel arrangement to the successional gradient. Compared to biotic community characteristics such as density of plants, abiotic environmental variables such as soil characteristics, aspect and inclination of the plots showed only marginal correlations to wood anatomical traits. Furthermore, the link between environment and species composition of the forest communities was found to be more important in explaining the trait–environment relationship than between the communities and species wood traits. In addition, our results support the idea that most of the species in the subtropical forest might be functionally equivalent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ackerly DD, Cornwell WK (2007) A trait-based approach to community assembly: partitioning of species trait values into within- and among-community components. Ecol Lett 10:135–145

    Article  PubMed  CAS  Google Scholar 

  • Alexander RM (1997) Physiological ecology-leaning trees on sloping ground. Nature 386:327–329

    Article  CAS  Google Scholar 

  • Amobi GL (1973) Periodicity of wood formation in some trees of lowland forest in Nigeria. Ann Bot NS 37:211–218

    Google Scholar 

  • Barajas-Morales J (1985) Wood structural differences between trees of two tropical forests in Mexico. IAWA Bull NS 6:355–364

    Google Scholar 

  • Baraloto C, Paine CET, Poorter L, Beauchene J, Bonal D, Domenach A-M, Hérault B, Patinõ S, Roggy J-C, Chave J (2010) Decoupled leaf and stem economics in rain forest trees. Ecol Lett. doi: 10.1111/j.1461-0248.2010.01517.x (in press)

  • Barthlott W, Mutke J, Rafiqpoor D, Kier G, Kreft H (2005) Global centers of vascular plant diversity. Nova Acta Leopoldina 92:61–83

    Google Scholar 

  • Boninsegna JA, Argollo J, Aravena JC, Barichivich J, Christie D, Ferrero ME, Lara A, Le Quesne C, Luckman BH, Masiokas M et al (2009) Dendroclimatological reconstructions in South America: a review. Palaeogeogr Palaeoclimatol Palaeoecol 281:210–228

    Article  Google Scholar 

  • Borchert R (1994) Soil and stem water storage determine phenology and distribution of tropical dry forest trees. Ecology 75:1437–1449

    Article  Google Scholar 

  • Both S, Fang T, Böhnke M, Bruelheide H, Geißler C, Kühn P, Scholten T, Trogisch S, Erfmeier A (2011) Lack of tree layer control on herb layer characteristics in a subtropical forest, China. J Veg Science 22:1120–1131

    Google Scholar 

  • Bruelheide H, Böhnke M, Both S, Fang T, Assmann T, Baruffol M, Bauhus J, Buscot F, Chen XY, Ding BY et al (2011) Community assembly during secondary forest succession in a Chinese subtropical forest. Ecol Monogr 81:25–41

    Article  Google Scholar 

  • Bush SE, Pataki DE, Hultine KR, West AG, Sperry JS, Ehleringer JR (2008) Wood anatomy constrains stomatal responses to atmospheric vapor pressure deficit in irrigated, urban trees. Oecologia 156:13–20

    Article  PubMed  Google Scholar 

  • Carlquist S (1984) Vessel grouping in dicotyledon wood: significance and relationship to imperforate tracheary elements. Aliso 10:505–525

    Google Scholar 

  • Carlquist S (1988) Comparative wood anatomy. Springer-Verlag, Heidelberg

    Google Scholar 

  • Deng F, Zang R, Chen B (2008) Identification of functional groups in an old-growth tropical montane rain forest on Hainan Island, China. For Ecol Manag 255:1820–1830

    Article  Google Scholar 

  • Díaz S, Cabido M, Casanoves F (1998) Plant functional traits and environmental filters at a regional scale. J Veg Sci 9:113–122

    Article  Google Scholar 

  • Dray S, Dufour AB (2007) The ade4 package: Implementing the duality diagram for ecologists. J Stat Softw 22(4):1–20

    Google Scholar 

  • Dray S, Legendre P (2008) Testing the species traits environment relationships: the Fourth-Corner problem revisited. Ecology 89(12):3400–3412

    Article  PubMed  Google Scholar 

  • Dünisch O, Montóia VR, Bauch J (2003) Dendroecological investigations on Swietenia macrophylla King and Cedrela odorata L. (Meliaceae) in the central Amazon. Trees–Struct Funct 17:244–250

    Google Scholar 

  • Ellmore GS, Ewers FW (1985) Hydraulic conductivity in trunk xylem of elm, Ulmus americana. IAWA Bull NS 6:303–307

    Google Scholar 

  • Gebrekirstos A, Mitlöhner R, Teketay D, Worbes M (2008) Climategrowth relationships of the dominant tree species from semi-arid savanna woodland in Ethiopia. Trees-Struct Funct 22:631–641

    Article  Google Scholar 

  • Geißler C, Kühn P, Böhnke M, Bruelheide H, Shi X, Scholten T (2010) Measuring splash erosion potential under vegetation using sand-filled splash cups. Catena. doi:10.1016/j.catena.2010.10.009

  • Gerlach D (1984) Botanische Mikrotechnik—Eine Einführung. Georg Thieme-Verlag, Stuttgart

    Google Scholar 

  • Gilbert SG (1940) Evolutionary significance of ring porosity in woody angiosperms. Bot Gaz 102:105–120

    Article  Google Scholar 

  • Hacke UG, Sperry JS, Wheeler JK, Castro L (2006) Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiol 26:689–701

    Article  PubMed  Google Scholar 

  • Hammel HT (1967) Freezing of xylem sap without cavitation. Plant Physiol 42:55–66

    Article  PubMed  CAS  Google Scholar 

  • Hubbell SP (2001) The unified theory of biodiversity and biogeography. Princeton 653 University Press, Princeton

    Google Scholar 

  • Hubbell SP (2005) Neutral theory in ecology and the hypothesis of functional equivalence. Funct Ecol 19:166–172

    Article  Google Scholar 

  • Hurlbert SH (1971) The nonconcept of species diversity: a critique and alternative parameters. Ecology 52(4):577–586

    Article  Google Scholar 

  • IAWA Committee (1989) IAWA list of microscopic features for hardwood identification. IAWA Bull NS 10(3):219–332

    Google Scholar 

  • Ishii R, Higashi M (1997) Tree coexistence on a slope: an adaptive significance of trunk inclination. Proc. R. Soc. London B: Biol. Sci. 264:133–139

    Article  Google Scholar 

  • Jung V, Violle C, Mondy C, Hoffmann L, Muller S (2010) Intraspecific variability and trait-based community assembly. J Ecol 98:1134–1140

    Article  Google Scholar 

  • Keddy PA (1992) Assembly and response rules: two goals for predictive community ecology. J Veg Sci 3:157–164

    Article  Google Scholar 

  • Kraft NJB, Metz MR, Condit RS, Chave J (2010) The relationship between wood density and mortality in a global tropical forest data set. New Phytol 188:1124–1136

    Article  PubMed  Google Scholar 

  • Kuiters AT, Kramer K, van der Hagen HGJM, Schaminée JHJ (2009) Plant diversity, species turnover and shifts in functional traits in coastal dune vegetation: results from permanent plots over a 52-year period. J Veg Sci 20:1053–1063

    Article  Google Scholar 

  • Lang AC, Härdtle W, Bruelheide H, Geißler C, Nadrowski K, Schuldt A, Yu MY, von Oheimb G (2010) Tree morphology responds to neighbourhood competition and slope in species-rich forests in subtropical China. For Ecol Manag 260:1708–1715

    Article  Google Scholar 

  • Lebrija-Trejos E, Pérez-Gárcia EA, Meave JA, Bongers F, Poorter L (2010) Functional traits and environmental filtering drive community assembly in a species-rich tropical system. Ecology 91(2):386–398

    Article  PubMed  Google Scholar 

  • Legendre P, Mi XC, Ren HB, Ma KP, Yu MJ, Sun I-F, He FL (2009) Partitioning beta diversity in a subtropical broad-leaved forest of China. Ecology 90:663–674

    Article  PubMed  Google Scholar 

  • Li Y, Sperry JS, Taneda H, Bush SE, Hacke UG (2008) Evaluation of centrifugal methods for measuring xylem cavitation in conifers, diffuse- and ring-porous angiosperms. New Phytol 177:558–568

    PubMed  Google Scholar 

  • Lindorf H (1994) Eco-anatomical wood features of species from a very dry tropical forest. IAWA J 15:363–376

    Google Scholar 

  • Lososová L, Láníkova D (2009) Differences in trait compositions between rocky natural and artificial habitats. J Veg Sci 21:520–530

    Article  Google Scholar 

  • Lou L, Jin S (2000) Spermatophyta flora of Gutianshan Nature Reserve in Zhejiang. J Beijing For Univ 22:33–39

    Google Scholar 

  • Lüttge U, Kluge M, Bauer G (2002) Botanik. Wiley-VCH-Verlag, Weinheim

    Google Scholar 

  • McGlone MS, Dungan RJ, Hall GMJ, Allen RB (2004) Winter leaf loss in the New Zealand wood flora. NZ J Bot 42(1):1–19

    Article  Google Scholar 

  • Oksanen J, Blanchet G, Kindt R, Legendre P, O'Hara G, Simpson GL, Solymos P, Henry M, Stevens H, Wagner H (2010) Vegan: community ecology package. R package version 1.17-0. http://CRAN.R-project.org/package=vegan

  • Olsen ME (2005) Commentary: typology, homology, and homolasy in comparative wood anatomy. IAWA J 26(4):507–522

    Google Scholar 

  • Pavoine S, Vallet J, Dufour A-B, Gachet S, Daniel H (2009) On the challenge of treating various types of variables: application for improving the measurement of functional diversity. Oikos 118:391–402

    Google Scholar 

  • Poorter L, Bongers L, Bongers F (2006) Architecture of 54 moist-forest tree species: traits, trade-offs, and functional groups. Ecology 87:1289–1301

    Article  PubMed  Google Scholar 

  • Poorter L, McDonald I, Alarcón A, Fichtler E, Licona JC, Peña-Carlos M, Sterck F, Villegas Z, Sass-Klaassen U (2010) The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytol 185:481–492

    Article  PubMed  Google Scholar 

  • R Development Core Team (2008) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Reich PB, Walters MB, Ellesworth DS (1992) Leaf lifespan in relation to leaf, plant and stand characteristics among diverse ecosystems. Ecol Monogr 62:365–392

    Article  Google Scholar 

  • Reich PB, Ellsworth DS, Walters MB, Vose JM, Gresham C, Volin JC, Bowman WD (1999) Generality of leaf trait relationships: a test across six biomes. Ecology 80(6):1955–1969

    Article  Google Scholar 

  • Robards A (1985) Botanical microscopy. Oxford University Press, Oxford

    Google Scholar 

  • Römermann M, Kleyer M, Poschlod P (2009) Substitutes for grazing in semi-natural grasslands, do mowing or mulching represent valuable alternatives to maintain vegetation structure? J Veg Sci 20(6):1086–1098

    Article  Google Scholar 

  • Rozendaal DMA, Zuidema PA (2011) Dendroecology in the tropics: a review. Trees Struct Funct 25:3–16

    Article  Google Scholar 

  • Sasaki T, Okubo S, Okayasu T, Jamsran U, Ohkuro T, Takeuchi K (2009) Two-phase functional redundancy in plant communities along a grazing gradient in mongolian rangelands. Ecology 90(9):2598–2608

    Article  PubMed  Google Scholar 

  • Schamp BS, Chau J, Aarssen LW (2008) Dispersion of traits related to competitive ability in an old-field plant community. J Ecol 96:204–212

    Google Scholar 

  • Schweingruber FH (1990) Anatomy of European woods. Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft, Birmensdorf. Haupt-Verlag, Bern

    Google Scholar 

  • Schweingruber FH (2001) Dendroökologische Holzanatomie. Haupt-Verlag, Bern, Stuttgart, Wien

    Google Scholar 

  • Shipley B, Vile D, Garnier É (2006) From plant traits to plant communities: a statistical mechanistic approach to biodiversity. Science 314:812–814

    Article  PubMed  CAS  Google Scholar 

  • Sperry JS, Nicholas KL, Sullivan JEM, Eastlack SE (1994) Xylem embolism in ring-porous, diffuse-porous and coniferous trees of northern Utah and interior Alaska. Ecology 75(6):1736–1752

    Article  Google Scholar 

  • Stubbs WJ, Wilson JB (2004) Evidence for limiting similarity in a sand dune community. J Ecol 92:557–567

    Article  Google Scholar 

  • Taneda H, Sperry JS (2008) A case-study of water transport in co-occurring ring- versus diffuse-porous trees: contrasts in water-status, conducting capacity, cavitation and vessel refilling. Tree Physiol 28:1641–1651

    Article  PubMed  Google Scholar 

  • von Oheimb G, Lang AC, Bruelheide H, Forrester DI, Wäsche I, Yue M, Härdtle G (2011) Individual-tree radial growth in a subtropical broad-leaved forest: the role of local neighbourhood competition. For Ecol Manag 261:499–507

    Article  Google Scholar 

  • Wang XH, Kent M, Fang X-F (2007) Evergreen broad-leaved forest in Eastern China: its ecology and conservation and the importance of resprouting in forest restoration. For Ecol Manag 245:76–87

    Article  Google Scholar 

  • Wang ZG, Ye WH, Cao HL, Huang ZG, Lian JY, Li L, Wei SG, Sun I-F (2009) Species-topography association in a species-rich subtropical forest of China. Basic Appl Ecol 10:648–655

    Article  Google Scholar 

  • Webb CT, Hoeting JA, Ames GM, Pyne MI, Poff NL (2010) A structured and dynamic framework to advance traits-based theory and prediction in ecology. Ecol Lett 13:267–283

    Article  PubMed  Google Scholar 

  • Wheeler EA, Baas P, Rodgers S (2007) Variations in dicot wood anatomy: a global analysis based on the Inside Wood database. IAWA J 28(3):229–258

    Google Scholar 

  • Wills C, Harms KE, Condit R, King D, Thompson J, He F-L, Muller-Landau HC, Ashton P, Losos E, Comita L et al (2006) Nonrandom processes maintain diversity in tropical forests. Science 311:527–531

    Article  PubMed  CAS  Google Scholar 

  • Woodcock DW (1989) Significance of ring porosity in analysis of a Sangamon Flora. Palaeogeogr Palaeoclimatol Palaeoecol 73:197–204

    Article  Google Scholar 

  • Worbes M (1995) How to measure growth dynamics in tropical trees: a review. IAWA J 16:337–351

    Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M et al (2004) The worldwide leaf economics spectrum. Nature 428(6985):821–827

    Article  PubMed  CAS  Google Scholar 

  • Wu ZY (1980) Vegetation of China. Science Press, Beijing

    Google Scholar 

  • Yu M-J, Hu Z-H, Yu J-P, Ding B-Y, Fang T (2001) Forest vegetation types in Gutianshan Natural Reserve in Zhejiang. J Zhejiang Univ (Agri Life Sci) 27:375–380

    Google Scholar 

  • Zanne AE, Westoby M, Falster DS, Ackerly DD, Loarie SR, Arnold SEJ, Coomes DA (2010) Angiopsperm wood structure: global patterns in vessel anatomy and their relation to wood density and potential conductivity. Am J Bot 97:207–215

    Article  PubMed  Google Scholar 

  • Zimmermann MH (1983) Xylem structure and the ascent of sap. Springer-Verlag, New York

    Google Scholar 

  • Zuidema PA, Vlam M, Chien PD (2011) Ages and long-term growth patterns of four threatened Vietnamese tree species. Trees-Struct Funct 25:29–38

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the Gutianshan National Nature Reserve for the permit and the whole team of BEF-China for the warm and supportive collaboration since the early beginning of the project. In particular (and not only for the challenging task of establishing 27 CSPs under the local circumstances), thanks to the overwhelming efforts and kindness of Andreas Schuldt, Martin Baruffol, Juliana Nates Jimenez, Sabine Both, Anne Lang, Stefan Trogisch, Zeng Xueqin and Bo Yang. We are indebted to Andreas Kundela and Bernhard Schmid who provided the PAR measurements. We also thank Heike Heklau, Bärbel Hildebrandt, Sebastian Hammer, Lars Ludwig and Anja Hallensleben for their help in the lab in Halle and two anonymous reviewers, who considerably helped to improve the manuscript. The BEF-China project (FOR 891) is funded by the German Research Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Böhnke.

Additional information

Communicated by G. Wieser.

Nomenclature: Flora of China (http://flora.huh.harvard.edu/china).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 607 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böhnke, M., Kreißig, N., Kröber, W. et al. Wood trait-environment relationships in a secondary forest succession in South-East China. Trees 26, 641–651 (2012). https://doi.org/10.1007/s00468-011-0632-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-011-0632-0

Keywords

Navigation