Skip to main content

Advertisement

Log in

Relationships between endophyte diversity and leaf optical properties

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

A single tropical plant species can harbour hundreds of endophyte species within its tissues. Beyond this, little is known about the relationship between endophyte colonization, leaf traits and spectral properties of leaves. We explore these relationships in Coccoloba cereifera, a plant well known for its symbiotic properties. Endophyte richness in C. cereifera was statistically correlated with leaf traits such as water content, the ratio of fresh weight/dry weight and polyphenol/leaf specific weight. Endophyte diversity was also related to spectral vegetation indices of chlorophyll content. The associations among endophyte diversity, leaf traits and spectral reflectance pose new questions and present new opportunities to better understand plant–fungal symbioses and related leaf optical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abe F, Inaba H, Katoh T, Hotchi M (1990) Effects of iron and desferrioxamine on Rhizopus infection. Mycopathologia 110:87–91

    Article  PubMed  CAS  Google Scholar 

  • Arnold AE (2005) Diversity and Ecology of fungal endophytes in tropical forests. In: Deshmukh S (ed) Current trends in mycological research. Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi, pp 49–68

    Google Scholar 

  • Arnold AE, Engrelbrecht BMJ (2007) Fungal endophytes nearly double minimum leaf conductance in seedlings of a neotropical tree species. J Trop Ecol 23:369–372

    Article  Google Scholar 

  • Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88:541–549

    Article  PubMed  Google Scholar 

  • Arnold AE, Mejia LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, Herre EA (2003) Fungal endophytes limit pathogen damage in a tropical tree. PNAS 100:15649–15654

    Article  PubMed  CAS  Google Scholar 

  • Barthod S, Cerovic Z, Epron D (2007) Can dual chlorophyll fluorescence excitation be used to assess the variation in the content of UV-absorbing phenolics compounds in leaves of temperate tree species along a light gradient? J Exp Bot 58:1753–1760

    Article  PubMed  CAS  Google Scholar 

  • Bissegger M, Sieber TN (1994) Assemblages of endophytic fungi in coppice shoots of Castanea sativa. Mycologia 86:648–655

    Article  Google Scholar 

  • Cannon PF, Simmons CM (2002) Diversity and host preference of leaf endophytic fungi in the Iwokrama Forest Reserve, Guyana. Mycologia 94:210–220

    Article  PubMed  Google Scholar 

  • Carroll GC, Carroll FE (1978) Studies on the incidence of coniferous endophytes in the Pacific Northwest. Can J Botany 56:3034–3043

    Article  Google Scholar 

  • Carter GA, Knapp AK (2001) Leaf optical properties in higher plants: linking spectral characteristics to stress and chlorophyll concentration. Am J Bot 88:677–684

    Article  PubMed  CAS  Google Scholar 

  • Castro-Esau KL, Sánchez-Azofeifa GA, Rivard B (2006a) Comparison of spectral indices obtained using multiple spectroradiometers. Remote Sens Environ 103:276–288

    Article  Google Scholar 

  • Castro-Esau KL, Sánchez-Azofeifa GA, Rivard B, Wright SJ, Quesada M (2006b) Variability in leaf optical properties of Mesoamerican trees and the potential for species classification. Am J Bot 93:517–530

    Article  PubMed  Google Scholar 

  • Clay K (1990) Fungal endophytes of grasses. Annu Rev Ecol Syst 21:275–297

    Article  Google Scholar 

  • Clay K, Holah J (1999) Fungal endophyte symbiosis and plant diversity in successional fields. Science 285:1742–1744

    Article  PubMed  CAS  Google Scholar 

  • Coley PD, Barone JA (1996) Herbivory and plant defenses in tropical forests. Annu Rev Ecol Syst 27:305–335

    Article  Google Scholar 

  • Conover WJ (1980) Practical nonparametric statistics, 2nd edn. Wiley, New York, p 493

    Google Scholar 

  • Costa-Pinto L, Azevedo JL, Pereira JO, Vieira MLC, Labate CA (2000) Symptomless infection of banana and maize by endophytic fungi impairs photosynthetic efficiency. New Phytol 147:609–615

    Article  Google Scholar 

  • de Vega C, Ortiz PL, Arista M, Talavera S (2007) The endophytic system of Mediterranean Cytinus (Cytinaceae) developing on five host Cistaceae species. Ann Bot Lond 100:1209–1217

    Article  Google Scholar 

  • Espinosa-Garcia FJ, Langenheim JH (1990) The endophytic fungal community in leaves of a coastal redwood population-diversity and spatial patterns. New Phytol 116:89–97

    Article  Google Scholar 

  • Faeth SH, Bultman TL (2002) Endophytic fungi and interactions among host plants, herbivores and natural enemies. In: Tscharntke T, Hawkins BA (eds) Multitrophic level interactions. Cambridge University Press, Cambridge, pp 89–123

    Chapter  Google Scholar 

  • Fernandes GW, Price PW (1992) The adaptive significance of insect gall distribution: survivorship of species in xeric and mesic habitats. Oecologia 90:14–20

    Article  Google Scholar 

  • Fisher PJ, Anson AE, Petrini DO (1986) Fungal endophytes in Ulex europaeus and Ulex gallii. T Brit Mycol Soc 86:153–156

    Article  Google Scholar 

  • Fukshansky LA, Remisowsky AM, McClendon J, Ritterbusch A, Richter T, Mohr H (1993) Absorption spectra of leaves corrected for scattering and distributional error: a radiative transfer and absorption statistics treatment. Photochem Photobiol 57:538–555

    Article  Google Scholar 

  • Gamboa MA, Bayman P (2001) Communities of endophytic fungi in leaves of a tropical timber tree Guarea guidonia: Meliaceae. Biotropica 33:352–360

    Google Scholar 

  • Gamon JA, Surfus JS (1999) Assessing leaf pigment content and activity with a reflectometer. New Phytol 143:105–117

    Article  CAS  Google Scholar 

  • Hamayun M, Khan SA, Ahmad N, Tang D-S, Kang S-M, Na C-I, Sohn E-Y, Hwang Y-H, Shin D-H, Lee BH, Kim J-G, Lee I-J (2009) Cladosporium sphaerospermum as a new plant growth-promoting endophyte from the roots of Glycine max L. Merr World J Microbiol Biotechnol 25:627–632

    Article  CAS  Google Scholar 

  • Harborne JB (1989) Methods in plant biochemistry. In: Dey PM, Harborne JB (eds) Plant phenolics, vol 1. Chapman Hall, London, pp 1–28

    Google Scholar 

  • Holden M (1976) Chlorophylls. In: Goodwin TW (ed) Chemistry and biochemistry of plant pigments, vol 2. Academic Press, London, pp 1–37

    Google Scholar 

  • Hunt MG, Rasmussen S, Newton PCD, Parsons AJ, Newman JA (2005) Near-term impacts of elevated CO2, nitrogen and fungal endophyte-infection on Lolium perenne L. growth, chemical composition and alkaloid production. Plant Cell Environ 28:1345–1354

    Article  CAS  Google Scholar 

  • Lodge DJ, Fisher PJ, Sutton BC (1996) Endophytic fungi of Manilkara bidentata leaves in Puerto Rico. Mycologia 88:733–738

    Article  Google Scholar 

  • Lüttge U (2008) Physiological ecology of tropical plants. Springer, Berlin, p 458

    Google Scholar 

  • Madeira JA, Fernandes GW (1999) Reproductive phenology of sympatric taxa of Chamaecrista Leguminosae. in Serra do Cipó, Brazil. J Trop Ecol 15:463–479

    Article  Google Scholar 

  • Malinowski DP, Belesky DP (2000) Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Sci 40:923–940

    Article  CAS  Google Scholar 

  • Marks S, Clay K (1996) Physiological responses of Festuca arundinacea to fungal endophyte infection. New Phytol 133:727–733

    Article  Google Scholar 

  • Martin F, Duplessis S, Ditengou F, Lagrange H, Voiblet C, Lapeyrie F (2001) Developmental cross talking in the ectomycorrhizal symbiosis: signals and communication genes. New Phytol 151:145–154

    Article  CAS  Google Scholar 

  • Meyer S, Cerovic ZG, Goulas Y, Montpied P, Demotes-Mainard S, Bidel LPR, Moya I, Dreyer E (2006) Relationships between optically assessed poyphenols and chlorophyll contents, and leaf mass per area ratio in woody plants: a signature of the carbon-nitrogen balance within leaves? Plant Cell Environ 29:1338–1348

    Article  PubMed  CAS  Google Scholar 

  • Moreira RG, McCauley RA, Corttes-Palomec AC, Lovato MB, Fernandes GW, Oyama K (2008) Isolation and characterization of microsatellite loci in Coccoloba cereifera (Polygonaceae), an endangered species endemic to the Serra do Cipo. Brazil Mol Ecol Resour 8:854–856

    Article  CAS  Google Scholar 

  • Moreira RG, McCauley RA, Corttes-Palomec AC, Fernandes GW, Oyama K (2009) Spatial genetic structure of Coccoloba cereifera (Polygonaceae), a critically endangered microendemic species of Brazilian rupestrian fields. Conserv Genet 11:1247–1255

    Article  Google Scholar 

  • Oki Y, Soares NR, Storquio M, Correa-Junior A, Fernandes GW (2009) The influence of the endophytic fungi on the herbivores from Baccharis dracunculifolia (Asteraceae). Neotrop Biol Conserv 4:83–88

    Article  Google Scholar 

  • Omacini M, Chaneton EJ, Ghersa CM, Muller CB (2001) Symbiotic fungal endophytes control insect host-parasite interaction webs. Nature 409:78–81

    Article  PubMed  CAS  Google Scholar 

  • Peters S, Aust HJ, Draeger S, Schulz B (1998) Interactions in dual cultures of endophytic fungi with host and nonhost plant calli. Mycologia 90:360–367

    Article  Google Scholar 

  • Pinar A, Curran PJ (1996) Grass chlorophyll and the reflectance red edge. Int J Remote Sens 17:351–357

    Article  Google Scholar 

  • Rayner ADM, Boddy L (1986) Population structure and the infection biology of wood-decay fungi in living trees. Adv Plant Pathol 5:119–160

    Google Scholar 

  • Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM (2002) Thermotolerance generated by plant fungal symbiosis. Science 298:1581

    Article  PubMed  CAS  Google Scholar 

  • Reicosky DA, Hanover JW (1978) Physiological effects of surface waxes. I. Light reflectance for glaucous and nonglaucous Picea pungens. Plant Physiol 62:101–104

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro KT, Fernandes GW (2000) Patterns of abundance of a narrow endemic species in a tropical and infertile montane habitat. Plant Ecol 147:205–218

    Article  Google Scholar 

  • Ribeiro KT, Codeço CT, Fernandes GW (2003) Local and regional spatial distribution of an eruptive and a latent herbivore insect species. Aust Ecol 28:99–107

    Article  Google Scholar 

  • Rodriguez RJ, Redman RS, Henson JM (2004) The role of fungal symbioses in the adaptation of plants to high stress environments. Mitig Adapt Strateg Global Change 9:261–272

    Article  Google Scholar 

  • Rodriguez RJ, White Jr, JF ArnoldAE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    Article  PubMed  CAS  Google Scholar 

  • Saikkonen K (2007) Forest structure and fungal endophytes. Fungal Biol Rev 21:67–74

    Article  Google Scholar 

  • Saikkonen K, Faeth SH, Helander M, Sullivan TJ (1998) Fungal endophytes: a continuum of interactions with host plants. Annu Rev Ecol Syst 29:319–343

    Article  Google Scholar 

  • Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686

    Article  PubMed  Google Scholar 

  • Seena S, Sridhar KR (2004) Endophytic fungal diversity of 2 sand dune wild legumes from the southwest coast of India. Can J Microbiol 50:1015–1021

    Article  PubMed  CAS  Google Scholar 

  • Silva CA, Oliva MA, Vieira MF, Fernandes GW (2008) Trioecy in Coccoloba cereifera Schwacke (Polygonaceae), a narrow endemic and treatened tropical species. Brazilian Arch Biol Technol 5:1003–1010

    Article  Google Scholar 

  • Sims DA, Gamon JA (2002) Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens Environ 81:337–354

    Article  Google Scholar 

  • Souza AQL, Souza ADL, Astolfi Filho S, Belém PML, Sarquis MIM, Pereira JO (2004) Antimicrobial activity of endophytic fungi isolated from Amazonian toxic plants: Palicourea longiflora aubl. rich and Strychnos cogens bentham. Acta Amazonica 34:185–195

    Article  Google Scholar 

  • Steinbauer MJ (2000) Specific leaf weight as an indicator of juvenile leaf toughness in Tasmanian bluegum (Eucalyptus globulus ssp. globulus): implications for insect defoliation. Aust For 64:32–37

    Google Scholar 

  • Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol R 67:491–502

    Article  CAS  Google Scholar 

  • Suryanarayanan TS, Thennarasan S (2004) Temporal variation in endophyte assemblages of Plumeria rubra leaves. Fungal Divers 15:197–204

    Google Scholar 

  • Tellenbach C, Grunig CR, Sieber TN (2010) Suitability of quantitative real-time PCR to estimate the biomass of fungal root endophytes. Appl Environ Microbiol 76:5764–5772

    Article  PubMed  CAS  Google Scholar 

  • Wilson D (2000) Ecology of woody plant endophytes. In: Bacon CW, White Jr JF (eds) Microbial endophytes. Marcel Dekker, New York, pp 389–420

    Google Scholar 

Download references

Acknowledgments

This paper is dedicated to Hubert Ziegler (founding editor of Trees: Structure and Function) for his contribution to innovative ideas in the science of plant physiology and ecology. We are grateful to Paul Savard, Daniela Esteves, Michel Storquio, Barbara Rosa and Isabela Nascimento for field measurements and assistance in the laboratory; Fernando A. O. Silveira, Daniel Negreiros, Marina B. M. Costa for comments on the manuscript. The research was supported by the National Science and Engineering Research Council of Canadá (NSERC), the Inter-American Institute for Global Change Research (IAI) under its collaborative Research Network Program (Tropi-Dry, CRN2-021) funded by the U.S. National Science Foundation (GEO 0452325), the Fundação de Amparo e Pesquisa de Minas Cerais (APQ-01278-08, EDT 465/07, CRA 122/07, RDP-00048-10); the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq 309633/2007-9, 476178/2008-8, 474292/2010-0, 559279/2008-6, 558250/2009-2, 151817/2008-1); and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES 002/2010 DRI/CGCI, BEX 323710-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arturo Sanchez-Azofeifa.

Additional information

Communicated by R. Hampp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanchez-Azofeifa, A., Oki, Y., Wilson Fernandes, G. et al. Relationships between endophyte diversity and leaf optical properties. Trees 26, 291–299 (2012). https://doi.org/10.1007/s00468-011-0591-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-011-0591-5

Keywords

Navigation