Skip to main content

Advertisement

Log in

Frequency response of Pinus Pinea L. for selective cone harvesting by vibration

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

The stone pine (Pinus pinea L.) is exploited for wood production and its edible kernels. Cones take 3 years to mature, while other newer cones are growing on the tree. Currently, mechanical cone harvesting by tree vibration drives the profitability and development of this crop in forest ecosystems. However, the adaptation of vibration parameters is necessary to avoid damage to the tree and for the implementation of good harvesting practices. Direct measurements of acceleration transmissibility along fruit-bearing branches under controlled laboratory conditions showed that vibrations in the frequency range of 18.0 ± 5.3 Hz were capable of producing resonance phenomena in mature cones. Morphological changes produced in the mature cones, especially in the stalk and total weight, amplified the acceleration transmissibility, providing more favourable conditions for fruit detachment. Field tests with stone pines and a trunk shaker confirmed the potential of selective mechanical harvesting, which is conditional on the vibration parameters applied. The frequency range of the resonance of the mature cone proved to be suitable for vibration of the tree at its trunk. The quality and efficiency of the mechanical harvesting were determined to be inversely related parameters during harvesting by vibration. Trunk vibration at a frequency of 18 Hz and approximate acceleration of 65 m/s2 achieved a high harvest quality, with limited detachment of shoots and unripe cones, and a harvesting efficiency near 85%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aristizabal ID, Oliveros CE, Alvarez F (2003) Mechanical harvest of coffee applying circular and multidirectional vibrations. Trans ASAE 46(2):205–209

    Google Scholar 

  • Barranco D, Fernández R, Rallo L (2008) El cultivo del olivo. Mundi-Prensa, Madrid

    Google Scholar 

  • Barriguinha AF, Pinheiro AC, Gonçalves AC et al (2005) Avaliação do Desempenho de um Vibrador Mecânico na Colheita de Pinha (Pinus pinea L.). In: Proceedings of the fifth national forestry conference, Visue, Portugal, pp 16–49

  • Bonari E, Bagliacca M, Ciomei D, Senesi G (1980) Raccolta dei pinoli con machine scuotitrici. Macchine e Motori Agricoli 38(12):41–46

    Google Scholar 

  • Brüchert F, Speck O, Spatz HC (2003) Oscillations of plants stems and their damping: theory and experimentation. Phil Trans R Soc Land B. doi:10.1098/rstb.2003.1348

  • Calama R, Montero G (2007) Cone and seed production from stone pine (Pinus pinea L.) stands in Central Range (Spain). Eur J Forest Res. doi:10.1007/s10342-005-0100-8

  • Castro-Garcia S, Rosa UA, Gliever CJ, Smith D, Burns JK, Krueger WH, Ferguson L, Glozer K (2009) Video evaluation of table olive damage during harvest with a canopy shaker. HortTechnology 19:260–266

    Google Scholar 

  • Eliasson L (2005) Effects for forwarder tyre pressure on rut formation and soil compactation. Silva Fenn 39(4):549–557

    Google Scholar 

  • Erdogan D, Guner M, Dursun E, Gezer I (2002) Mechanical harvesting of apricots. Biosyst Eng. doi:10.1016/S1537-5110(03)00024-2

  • Ewins DJ (2000) Modal testing: theory practice and application. Research Studies Press, England

    Google Scholar 

  • Ferguson L (2006) Trends in olive fruit handling previous to its industrial transformation. Grasas y Aceites. doi:10.3989/gya.2006.v57.i1

  • Gordo FJ, Mutke S, Gil L (1997) Variabilidad en la producción de fruto de Pinus pinea L. en la provincia de Valladolid. In: Proceedings of the second spanish forestry conference, Pamplona, Spain, pp 327–332

  • James KR (2003) Dynamic loading of trees. J Arboric 29(3):165–171

    Google Scholar 

  • James KR, Haritos N, Ades P (2006) Mechanical stability of trees under dynamic loads. Am J Bot 93(10):1522–1530

    Article  PubMed  Google Scholar 

  • Jonsson MJ, Foetzki A, Kalberer M, Lundstrom T, Ammann W, Stöckli V (2007) Natural frequencies and damping ratios of Norway spruce [Picea abies (L.) Karst] growing on subalpine forested slopes. Trees. doi:10.1007/s00468-007-0147-x

  • Kerzenmacher T, Gardiner B (1998) A mathematical model to describe the dynamic response of a spruce tree to the wind. Trees 12:385–394

    Article  Google Scholar 

  • MARM (2007) Anuario de Estadística Forestal. Ministerio de Medio Ambiente y Medio Rural y Marino. Spain. http://www.mma.es/portal/secciones/biodiversidad/montes_politica_forestal/estadisticas_forestal/. Accessed 29 June 2010

  • Martinez-Zurimendi P, Alvarez JM, Pando V, Dominguez M, Gordo J, Finat L, Sierra-de-Grado R (2009) Effects of vibration on stone pine trees (Pinus pinea L.) on the vigor of the trees: crown density growth shoots and parasites of weak trees. Invest Agrar-Sist R 18(1):50–63

    Google Scholar 

  • Miles JA, Mehlschau JJ, Moini S (1981) Factors affecting harvest of Loblolly pine cones. Trans ASAE 24(2):323–335

    Google Scholar 

  • Moini S, Miles JA (1981) Conifer cone harvesting: an experimental approach. Trans ASAE 24(3):549–551

    Google Scholar 

  • Montero-Gonzalez G, Candela-Plaza JA, Rodriguez-Navarro A (2004) El pino piñonero (Pinus pinea L.) en Andalucía. Junta de Andalucía, Seville

    Google Scholar 

  • Montoya-Oliver JM (1990) El pino piñonero. Mundi-Prensa, Madrid

    Google Scholar 

  • Moore JR, Maguire DA (2005) Natural sway frequencies and damping ratios of trees: influence of crown structure. Trees. doi:10.1007/s00468-003-0295-6

  • Müller U, Gindl W, Jeronimidis G (2006) Biomechanics of a branch–stem junction in softwood. Trees. doi:10.1007/s00468-006-0079-x

  • Mutke S, Gordo J, Climent J, Gil L (2003) Shoot growth and phenology modelling of grafted stone pine (Pinus pinea L.) in Inner Spain. Ann Forest Sci. doi:10.1051/forest:2003046

  • Mutke S, Gordo J, Gil L (2005) Cone yield characterization of a stone pine (Pinus pinea L.) clone bank. Silvae Genet 54(4–5):189–197

    Google Scholar 

  • Peruzzi A, Mazzoncini M, Ciomei D, Senesi G (1989) Meccanizzazione delle operazioni di raccolta degli strobili di pino domestico Pins Pinea L. Nota 2 Risultati produttivi e primi valutazioni degli effetti delle vibrazioni sulle piante. Ingegneria Agaria. Anno XX 4:234–239

    Google Scholar 

  • Pezzi F, Caprara C (2009) Mechanical grape harvesting: investigation of the transmission of vibrations. Biosyst Eng. doi:10.1016/j.biosystemseng.2009.04.002

  • Pinheiro AC, Peça JO, Gonçalves AC, Ribeiro NA et al (2003) Utilização de um vibrador multidireccional na colheita mecânica de pinha (Pinus pinea L.). In: Proceedings of first national conference of rural engineering, Lisbon

  • Rosa UA, Cheetancheri KG, Gliever CJ, Lee SH, Thompson J, Slaughter DC (2008) An electro-mechanical limb shaker for fruit thinning. Comput Electron Agric. doi:10.1016/j.compag.2007.11.008

  • Sanders KF (2005) Orange harvesting systems review. Biosyst Eng. doi:10.1016/j.biosystemseng.2004.10.006

  • So JD (2003) Vibratory harvesting machine for boxthorn (Lycium chinense Mill) berries. Trans ASAE 46(2):211–221

    Google Scholar 

  • Spatz HC, Brüchert F, Pfisterer J (2007) Multiple resonance damping or how do trees escape dangerously large oscillations? Am J Bot 94(10):1603–1611

    Article  PubMed  Google Scholar 

  • Torregrosa A, Martin B, Ortiz C, Chaparro O (2006) Mechanical harvesting of processed apricots. Appl Eng Agric 22(4):499–506

    Google Scholar 

  • Whitney JD, Hartmond U, Kender WJ, Burns JK, Salyani M (2000) Orange removal with trunk shakers and abscission chemicals. Appl Eng Agric 16(4):367–371

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from “Empresa de Gestión Medioambiental, S.A (EGMASA)” and “Obras y Servicios Ambientales S.A (SEFOSA)” provided for this study and the Spanish Ministry of Science and Technology (project AGL2007-61533) for the research methodology and instrumentation used. The authors are most grateful to Prof. Dr. Luis Gil of the Universidad Politécnica de Madrid (Spain) and two anonymous reviewers for theirs valuable comments and revisions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús A. Gil-Ribes.

Additional information

Communicated by J. Carlson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castro-García, S., Blanco-Roldán, G.L. & Gil-Ribes, J.A. Frequency response of Pinus Pinea L. for selective cone harvesting by vibration. Trees 25, 801–808 (2011). https://doi.org/10.1007/s00468-011-0556-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-011-0556-8

Keywords

Navigation