, Volume 25, Issue 5, pp 785–799 | Cite as

QualiTree, a virtual fruit tree to study the management of fruit quality. II. Parameterisation for peach, analysis of growth-related processes and agronomic scenarios

  • José M. Mirás-Avalos
  • Gregorio Egea
  • Emilio Nicolás
  • Michel Génard
  • Gilles Vercambre
  • Nicolas Moitrier
  • Pierre Valsesia
  • María M. González-Real
  • Claude Bussi
  • Françoise Lescourret
Original Paper


In this paper, QualiTree, a fruit tree model designed to study the management of fruit quality, and developed and described in a companion paper (Lescourret et al. in Trees Struct Funct, 2010), was combined with a simple light-interception sub-model, and then parameterised and tested on peach in different situations. Simulation outputs displayed fairly good agreement with the observed data concerning mean fruit and vegetative growth. The variability over time of fruit and vegetative growth was well predicted. QualiTree was able to reproduce the observed response of trees to heterogeneous thinning treatments in terms of fruit growth. A sensitivity analysis showed that the average seasonal growth rates of the different organs were sensitive to changes to the values of their respective initial relative growth rates and that stem wood was the tree organ the most affected by a change in the initial relative growth rates of other organs. QualiTree was able to react to simulated scenarios that combined thinning and pest attacks. As expected, thinning intensity and the percentage damage caused by pests significantly affected fruit yield and quality traits at harvest. These simulations showed that QualiTree could be a useful tool to design innovative horticultural practices.


Carbon allocation Growth Fruit Sensitivity analysis 

Supplementary material

468_2011_555_MOESM1_ESM.doc (204 kb)
Supplementary material (DOC 204 kb)


  1. Abrisqueta JM, Mounzer O, Álvarez S, Conejero W, García-Orellana Y, Tapia LM, Vera J, Abrisqueta I, Ruiz-Sánchez MC (2008) Root dynamics of peach trees submitted to partial rootzone drying and continuous deficit irrigation. Agric Water Manag 95:959–967CrossRefGoogle Scholar
  2. Allen MT, Prusinkiewicz P, DeJong TM (2005) Using L-systems for modeling source-sink interactions, architecture and physiology of growing trees: the L-peach model. New Phytol 166(3):869–880PubMedCrossRefGoogle Scholar
  3. Ashworth EN, Stirm VE, Volenec JJ (1993) Seasonal variations in soluble sugars and starch within woody stems of Cornus sericea L. Tree Physiol 13:379–388PubMedGoogle Scholar
  4. Ben Mimoun M, Longuenesse JJ, Génard M (1996) Pmax as related to leaf:fruit ratio and fruit assimilate demand in peach. J Horticult Sci 71:767–775Google Scholar
  5. Bergez JE, Colbach N, Crespo O, Garcia F, Jeuffroy MH, Justes E, Loyce C, Munier-Jolain N, Sadok W (2010) Designing crop management systems by simulation. Eur J Agron 32:3–9. doi:10.1016/j.eja.2009.06.001 CrossRefGoogle Scholar
  6. Berman ME, DeJong TM (2003) Seasonal patterns of vegetative growth and competition with reproductive sinks in peach (Prunus persica). J Horticult Sci Biotechnol 78(3):303–309Google Scholar
  7. Bussi C, Lescourret F, Génard M, Habib R (2005) Pruning intensity and fruit load influence vegetative and fruit growth in an early-maturing peach tree (cv. Alexandra). Fruits 60(2):133–142CrossRefGoogle Scholar
  8. Buwalda JG (1991) A mathematical model of carbon acquisition and utilization by kiwifruit vines. Ecol Model 57:43–64CrossRefGoogle Scholar
  9. Charles-Edwards DA, Thornley JHM (1973) Light interception by an isolated plant. A simple model. Ann Bot 37:919–928Google Scholar
  10. Chelle M, Andrieu B (2007) Modelling the light environment of virtual crop canopies. In: Vos J, Marcelis LFM, DeVisser PHB, Struik PC, Evers JB (eds) Proceedings of workshop on functional–structural plant modelling in crop production, Wageningen, The Netherlands, March 05–08, 2006. Springer, pp 75–89Google Scholar
  11. Chen JL, Reynolds JF (1997) A coordination model of whole-plant carbon allocation in relation to water stress. Ann Bot 80(1):45–55CrossRefGoogle Scholar
  12. Corelli-Grappadelli L, Coston DC (1991) Thinning pattern and light environment in peach tree canopies influence fruit quality. HortScience 26:1464–1466Google Scholar
  13. Costes E, Smith C, Renton M, Guedon Y, Prusinkiewicz P, Godin C (2008) MAppleT: simulation of apple tree development using mixed stochastic and biomechanical models. Funct Plant Biol 35(9–10):936–950CrossRefGoogle Scholar
  14. de Pury DGG, Farquhar GD (1997) Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. Plant Cell Environ 20:537–557CrossRefGoogle Scholar
  15. Fishman S, Génard M (1998) A biophysical model of fruit growth: simulation of seasonal and diurnal dynamics of mass. Plant Cell Environment 21(8):739–752CrossRefGoogle Scholar
  16. Gary C, Jones JW, Tchamitchian M (1998) Crop modelling in horticulture: state of the art. Sci Hortic 74:3–20CrossRefGoogle Scholar
  17. Génard M, Baret F (1994) Spatial and temporal variation of light inside peach trees. J Am Soc Hortic Sci 119:669–677Google Scholar
  18. Génard M, Souty M (1996) Modeling the peach sugar contents in relation to fruit growth. J Am Soc Hortic Sci 121(6):1122–1131Google Scholar
  19. Génard M, Lescourret F, Ben Mimoun M, Besset J, Bussi C (1998) A simulation model of growth at the shoot-bearing fruit level. II. Test and effect of source and sink factors in the case of peach. Eur J Agron 9(2–3):189–202CrossRefGoogle Scholar
  20. Génard M, Lescourret F, Gomez L, Habib R (2003) Changes in fruit sugar concentrations in response to assimilate supply, metabolism and dilution: a modeling approach applied to peach fruit (Prunus persica). Tree Physiol 23:373–385PubMedGoogle Scholar
  21. Génard M, Dauzat J, Frank N, Lescourret F, Moitrier N, Vaast P, Vercambre G (2008) Carbon allocation in fruit trees: from theory to modelling. Trees Struct Funct 22:269–282Google Scholar
  22. Gibert C, Lescourret F, Génard M, Vercambre G, Pérez Pastor A (2005) Modelling the effect of fruit growth on surface conductance to water vapour diffusion. Ann Bot 95:673–683PubMedCrossRefGoogle Scholar
  23. Gibert C, Génard M, Vercambre G, Lescourret F (2010) Quantification and modelling of the stomatal, cuticular and crack components of peach fruit surface conductance. Funct Plant Biol 37:264–274CrossRefGoogle Scholar
  24. Grechi I, Sauge MH, Sauphanor B, Hilgert N, Senoussi R, Lescourret F (2008) How does winter pruning affect peach tree–Myzus persicae interactions? Entomol Exp Appl 128:369–379CrossRefGoogle Scholar
  25. Grossman YL, DeJong TM (1994a) Carbohydrate requirements for dark respiration by peach vegetative organs. Tree Physiol 14:37–48PubMedGoogle Scholar
  26. Grossman YL, DeJong TM (1994b) PEACH: a simulation model of reproductive and vegetative growth in peach trees. Tree Physiol 14:329–345PubMedGoogle Scholar
  27. Grossman YL, DeJong TM (1995) Maximum vegetative growth potential and seasonal patterns of resource dynamics during peach growth. Ann Bot 76:473–482CrossRefGoogle Scholar
  28. Higgins SS, Larsen FE, Bendel RB, Radamaker GK, Bassman JH, Bidlake WR, Al Wir A (1992) Comparative gas exchange characteristics of potted, glass-house-grown almond, apple, fig, grape, olive, peach and Asian pear. Sci Hortic 52:313–329CrossRefGoogle Scholar
  29. Hipps NA, Pagès L, Huguet JG, Serra V (1995) Influence of controlled water supply on shoot and root development of young peach trees. Tree Physiol 15:95–103PubMedGoogle Scholar
  30. Hoogenboom G, White JW, Messina CD (2004) From genome to crop: integration through simulation modeling. Field Crops Res 90:145–163CrossRefGoogle Scholar
  31. Inglese P, Caruso T, Pace LS, Gugliuzza G (2002) Crop load and rootstock influence on dry matter partitioning in trees of early and late ripening peach cultivars. J Am Soc Hortic Sci 127:825–830Google Scholar
  32. Jordan MO, Habib R (1996) Mobilizable carbon reserves in young peach trees as evidenced by trunk girdling experiments. J Exp Bot 47:79–87CrossRefGoogle Scholar
  33. Kobayashi K, Salam MU (2000) Comparing simulated and measured values using mean squared deviation and its components. Agron J 92:345–352Google Scholar
  34. Kozlowski TT, Kramer PJ, Pallardy SG (1991) The physiological ecology of woody plants. Academic Press, San Diego, CAGoogle Scholar
  35. Lescourret F, Génard M (2005) A virtual peach fruit model simulating changes in fruit quality during the final stage of fruit growth. Tree Physiol 25:1303–1315PubMedGoogle Scholar
  36. Lescourret F, Ben Mimoun M, Génard M (1998) A simulation model of growth at the shoot-bearing fruit level. I. Description and parameterization for peach. Eur J Agron 9:173–178CrossRefGoogle Scholar
  37. Lescourret F, Génard M, Habib R, Fishman S (2001) Variation in surface conductance to water vapor diffusion in peach fruit and its effects on fruit growth assessed by a simulation model. Tree Physiol 21(11):735–741PubMedGoogle Scholar
  38. Lescourret F, Moitrier N, Valsesia P, Génard M (2010) QualiTree, a virtual fruit tree to study the management of fruit quality. I. Model development. Trees Struct Funct. doi:10.1007/s00468-010-0531-9
  39. Lopez G, Favreau RR, Smith C, Costes E, Prusinkiewicz P, DeJong TM (2008) Integrating simulation of architectural development and source-sink behaviour of peach trees by incorporating markov chains and physiological organ function submodels into L-peach. Funct Plant Biol 35(9–10):761–771CrossRefGoogle Scholar
  40. Marsal J, Basile B, Solari L, DeJong TM (2003) Influence of branch autonomy on fruit, scaffold, trunk and root growth during Stage III of peach fruit development. Tree Physiol 23:313–323PubMedGoogle Scholar
  41. Mediene S, Jordan MO, Pagès L, Lebot J, Adamowicz S (2002) The influence of severe shoot pruning on growth, carbon and nitrogen status in young peach trees (Prunus persica). Tree Physiol 22:1289–1296PubMedGoogle Scholar
  42. Mercier V, Bussi C, Plenet D, Lescourret F (2008) Effects of limiting irrigation and of manual pruning on brown rot incidence in peach. Crop Prot 27:678–688CrossRefGoogle Scholar
  43. Miller AN, Walsh CS (1988) Growth and seasonal partitioning of dry matter in eight-year old ‘Loring’ peach trees. J Am Soc Hortic Sci 113:309–314Google Scholar
  44. Moing A, Gaudillère JP (1992) Carbon and nitrogen partitioning in peach/blum grafts. Tree Physiol 10:81–92PubMedGoogle Scholar
  45. Monsi M, Saeki T (1953) Uber den Lichfaktor in den pflanzengesellschaften und seine bedeutung fur die stoffproduktion. Jpn J Bot 14:22–52Google Scholar
  46. Nicolás E, Lescourret F, Génard M, Bussi C, Besset J (2006) Does dry matter partitioning to fruit in early- and late-ripening peach (Prunus persica) cultivars confirm the branch autonomy theory? J Hortic Sci Biotechnol 81(3):444–448Google Scholar
  47. Norman JM, Welles JM (1983) Radiative transfer in an array of canopies. Agron J 75:481–488CrossRefGoogle Scholar
  48. R Development Core Team (2008) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. (last accessed: 27 April 2009)
  49. Reynolds JF, Chen JL (1996) Modelling whole-plant allocation in relation to carbon and nitrogen supply: coordination versus optimization: opinion. Plant Soil 185(1):65–74CrossRefGoogle Scholar
  50. Rieger M, Marra F (1994) Responses of young peach trees to root confinement. J Am Soc Hortic Sci 119:223–228Google Scholar
  51. Rinaldi M, Ventrella D, Gagliano C (2007) Comparison of nitrogen and irrigation strategies in tomato using CROPGRO model. A case study from Southern Italy. Agric Water Manag 87:91–105CrossRefGoogle Scholar
  52. Rufat J, DeJong TM (2001) Estimating seasonal dynamics in peach trees in response to nitrogen availability. Tree Physiol 21:1133–1140PubMedGoogle Scholar
  53. Seeley EJ, Micke WC, Kammereck R (1980) ‘Delicious’ apple fruit size and quality as influenced by radiant flux density in the immediate growing environment. J Am Soc Hortic Sci 105:645–657Google Scholar
  54. Singh BU, Padmaja PG, Seetharama N (2004) Biology and management of the sugarcane aphid, Melanaphis sacchari (Zehntner) (Homoptera: Aphididae), in sorghum: a review. Crop Prot 23:739–755CrossRefGoogle Scholar
  55. Spann TM, Beede RH, DeJong TM (2008) Seasonal carbohydrate storage and mobilization in bearing and non-bearing pistachio (Pistacia vera) trees. Tree Physiol 28:207–213PubMedGoogle Scholar
  56. Walcroft AS, Lescourret F, Génard M, Sinoquet H, Le Roux X, Donès N (2004) Does variability in shoot carbon assimilation within the tree crown explain variability in peach fruit growth? Tree Physiol 24:313–322PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • José M. Mirás-Avalos
    • 1
    • 2
  • Gregorio Egea
    • 3
    • 4
  • Emilio Nicolás
    • 5
    • 6
  • Michel Génard
    • 1
  • Gilles Vercambre
    • 1
  • Nicolas Moitrier
    • 1
  • Pierre Valsesia
    • 1
  • María M. González-Real
    • 3
  • Claude Bussi
    • 7
  • Françoise Lescourret
    • 1
  1. 1.INRA, UR1115 Plantes et Systèmes de culture Horticoles (PSH)Avignon Cedex 9France
  2. 2.Facultad de CienciasUniversidade da CoruñaA CoruñaSpain
  3. 3.Universidad Politécnica de Cartagena, Plaza del Cronista Isidoro ValverdeCartagenaSpain
  4. 4.Department of Soil Science, School of Human and Environmental SciencesThe University of ReadingReadingUK
  5. 5.Departamento de Riego, Centro de Edafología y Biología Aplicada del SeguraCSICEspinardoSpain
  6. 6.Unidad Asociada al CSIC de Horticultura Sostenible en Zonas Áridas (UPCT-CEBAS)CartagenaSpain
  7. 7.INRA, UE695 Recherches Intégrées (UERI)Saint-Marcel-les-ValenceFrance

Personalised recommendations