Trees

, Volume 25, Issue 5, pp 755–767 | Cite as

Stem and wood allometric relationships in Cacteae (Cactaceae)

Original Paper

Abstract

Allometric relationships in organisms are considered a universal phenomenon. A positive scaling has been reported between stem size and cellular size of tracheary elements in wood of different vascular plants, but few studies have been carried out in slow-growing succulent plants. The aim of this study was to evaluate if a relationship exists between size, growth form and wood cell size among individual species of Cacteae. Forty-four species belonging to 16 genera of the tribe Cacteae with differing growth forms and sizes were studied. When analyzing plant size, we found a positive allometric scaling and the larger-sized species showing a higher percentage of succulent tissue and less accumulation of wood tissue. The positive scaling found between plant size (height and diameter) and vessel elements and fiber length support the universality of the allometric relationship proposed for other vascular plants with non-succulent stems. Notably, wide-band tracheids do not scale with plant size or growth form. Succulence associated with narrow vessel elements with distinctive helical secondary walls and wide-band tracheids suggest they are the key adaptations to tolerate drought and provide support to the stems of most taxa in Cacteae. Fibers do not have the primary role of giving mechanical support; therefore, we assume the scarce fibers in clusters represent reaction wood that, along with the fundamental tissue, maintains the vertical position and shape of those species growing in rocky cracks. Our results with species having short succulent stems support the universal theory of positive allometric scaling of vascular plants.

Keywords

Allometry Cactaceae Fiber length Growth forms Succulence Tracheary elements variation Vessel element length Wood scaling 

References

  1. Anderson EF (2001) The cactus family. Timber Press, PortlandGoogle Scholar
  2. Arias S, Terrazas T (2001) Variación en la anatomía de la madera de Pachycereus pecten-aboriginum (Cactaceae). An Inst Biol Univ Nac Aut México Bot 72:157–169Google Scholar
  3. Bailey IW (1920) The cambium and its derivative tissues. II. Size variations of cambial initials in gymnosperms and angiosperms. Am J Bot 7:355–367CrossRefGoogle Scholar
  4. Bailey IW, Tupper WW (1918) Size variation in tracheary cells. I. A comparison between the secondary xylems of vascular cryptogams, gymnosperms, and angiosperms. Proc Am Arts Sci 54:149–204CrossRefGoogle Scholar
  5. Bernal-Salazar S, Terrazas T (2005) Wood anatomical variation of Neobuxbaumia tetetzo: a columnar Cactaceae. J Arid Environ 63:671–685CrossRefGoogle Scholar
  6. Bierhorst DW, Zamora PM (1965) Primary xylem elements and element associations of angiosperms. Am J Bot 52:657–710CrossRefGoogle Scholar
  7. Bobich EG, Nobel PS (2001) Biomechanics and anatomy of cladode junctions for two Opuntia (Cactaceae) species and their hybrid. Am J Bot 88:391–400PubMedCrossRefGoogle Scholar
  8. Bobich EG, Nobel PS (2002) Cladode junctions regions and their biomechanics for arborescent platyopuntias. Int J Plant Sci 163:507–517CrossRefGoogle Scholar
  9. Bobich EG, North GB (2009) Structural implications of succulence: architecture, anatomy, and mechanics of photosynthetic stem succulents, pachycauls and leaf succulents. In: De la Barrera E, Smith WK (eds) Perspectives in biophysical plant ecophysiology: a tribute to Park S. Nobel. Universidad Nacional Autónoma de México, México DF, pp 3–37Google Scholar
  10. Bravo-Hollis H, Sánchez-Mejorada H (1991) Las cactáceas de México, vol I. Universidad Nacional Autónoma de México, México DFGoogle Scholar
  11. Butterworth CA, Cota-Sanchez JH, Wallace RS (2002) Molecular systematics of tribe Cacteae (Cactaceae: Cactoideae): a phylogeny based on rpl16 intron sequence variation. Syst Bot 27:257–270Google Scholar
  12. Buxbaum F (1950) Morphology of cacti. Section I Roots and stems. Abbey Garden Press, PasadenaGoogle Scholar
  13. Carlquist S (2001) Comparative wood anatomy systematics ecological and evolutionary aspects of dicotyledons wood. Springer, BerlinGoogle Scholar
  14. Chattaway MM (1936) Relation between fibre and cambial initial length in dicotyledonous wood. Trop woods 46:16–20Google Scholar
  15. Clair B, Ruelle J, Beauchêne J, Prévost MF, Fournier M (2006) Tension wood and opposite wood in 21 tropical rain forest species. 1. Occurrence and efficiency of the G-layer. IAWA J 27:329–338Google Scholar
  16. Coomes DA, Hethcore S, Godfrey ER, Shepherd JJ, Sack L (2008) Scaling of xylem vessels and veins within the leaves of oak species. Biol Lett 4:302–306PubMedCrossRefGoogle Scholar
  17. Cumbie BG, Mertz D (1962) Xylem anatomy of Sophora (Leguminosae) in relation to habit. Am J Bot 49:33–40CrossRefGoogle Scholar
  18. Edwards EJ (2006) Correlated evolution of stem and leaf hydraulic traits in Pereskia. New Phytol 172:479–489PubMedCrossRefGoogle Scholar
  19. Edwards EJ, Díaz M (2006) Ecological physiology of Pereskia guamacho, a cactus with leaves. Plant Cell Envron 29:247–256CrossRefGoogle Scholar
  20. Enquist BJ (2002) Universal scaling in tree and vascular plant allometry: toward a general quantitative theory linking plant form and function from cells to ecosystems. Tree Physiol 22:1045–1064PubMedGoogle Scholar
  21. Garrett TY, van Huynh C, North GB (2010) Root contraction helps protect the “living rock” cactus Ariocarpus fissuratus from lethal high temperatures when growing in rocky soil. Am J Bot 97:1951–1960PubMedCrossRefGoogle Scholar
  22. Gibson AC (1973) Comparative anatomy of secondary xylem in Cactoideae (Cactaceae). Biotropica 5:29–65CrossRefGoogle Scholar
  23. Gibson AC (1978) Woody anatomy of platyopuntias. Aliso 9:279–307Google Scholar
  24. Gibson AC, Nobel PS (1986) The cactus primer. Harvard University Press, CambridgeGoogle Scholar
  25. Hearn DJ (2009) Developmental patterns in anatomy are shares among separate evolutionary origins of steam succulent and storage root-bearing growth habits in Adenia (Passifloraceae). Am J Bot 96:1941–1956PubMedCrossRefGoogle Scholar
  26. Henrickson J (1969) The succulent fouquierias. Cact Succ J (Los Angeles) 41:178–184Google Scholar
  27. Hernández HM, Gómez-Hinostrosa C, Bárcenas RT (2001) Diversity, special arrangement, and endemism of Cactaceae in the Huizache area, a hot-spot in the Chihuhuan desert. Biodivers Conserv 10:1097–1112CrossRefGoogle Scholar
  28. IAWA Committee (1989) IAWA list of microscopic features for hardwood identifications. IAWA Bull n.s. 10:219–332Google Scholar
  29. Landrum JV (2006) Wide-band tracheids in genera of Portulacaceae: novel, non-xylary tracheids possibly evolved as an adaptation to water stress. J Plant Res 119:497–504PubMedCrossRefGoogle Scholar
  30. Landrum JV (2008) Wide-band tracheids from a southern African succulent and their responses to varying light intensities: a pre-adaptation for future water stress? Int J Bot 4:99–103CrossRefGoogle Scholar
  31. León WJ (2002) Anatomía xilemática del tronco de Pereskia guamacho (Cactaceae) procedente del estado de Mèrica-Venezuela. Pitteria 31:41–49Google Scholar
  32. Linton MJ, Nobel PS (1999) Loss of water transport capacity due to xylem cavitation in roots of two CAM succulents. Am J Bot 86:1538–1543PubMedCrossRefGoogle Scholar
  33. Loza-Cornejo S, Terrazas T (1996) Anatomía del tallo y de la raíz de dos especies de Wilcoxia Britton y Rose (Cactaceae) del noreste de México. Bol Soc Bot Mex 59:13–23Google Scholar
  34. Loza-Cornejo S, Terrazas T, López-Mata L, Trejo C (2003) Características morfo-anatómicas y metabolismo fotosintético de plántulas de Stenocereus queretaroensis (Cactaceae): su significado adaptativo. Interciencia 28:83–89Google Scholar
  35. Mauseth JD (2000) Theoretical aspects of surface-to-volume ratios and water-storage capacities of succulent shoots. Am J Bot 87:1107–1115PubMedCrossRefGoogle Scholar
  36. Mauseth JD (2004) Wide-band tracheids are present in almost all species of Cactaceae. J Plant Res 117:69–76PubMedCrossRefGoogle Scholar
  37. Mauseth JD (2006) Structure–function relationships in highly modified shoots of Cactaceae. Ann Bot 98:901–926PubMedCrossRefGoogle Scholar
  38. Mauseth JD, Plemons BJ (1995) Developmentally variable, polymorphic woods in cacti. Am J Bot 82:1199–1205CrossRefGoogle Scholar
  39. Mauseth JD, Plemons-Rodriguez BJ (1998) Evolution of extreme xeromorphic characters in wood: a study of nine evolutionary lines in Cactaceae. Am J Bot 85:209–218CrossRefGoogle Scholar
  40. Media Cybernetics (2006) Image pro-plus, 6.1 for windows. Silver SpringGoogle Scholar
  41. Metcalfe CR, Chalk L (1983) Anatomy of dicotyledons, vol II, 2nd edn. Clarendon Press, OxfordGoogle Scholar
  42. Motomura H, Noshiro S, Mikage M (2007) Variable wood formation and adaptation to the alpine environment of Ephedra pachyclada (Gnetales: Ephedraceae) in the Mustang District, western Nepal. Ann Bot 100:315–324PubMedCrossRefGoogle Scholar
  43. Niklas KJ, Buchman SL (1994) The allometry of Sahuaro height. Am J Bot 81:1161–1168CrossRefGoogle Scholar
  44. Niklas KJ, Molina-Freaner F, Tinoco-Ojanguren C (1999) Biomechanics of the columnar cactus Pachycereus pringlei. Am J Bot 78:1252–1259Google Scholar
  45. Niklas KJ, Molina-Freaner F, Tinoco-Ojanguren C, Paolillo DJ Jr (2000) Wood biomechanical and anatomy of Pachycereus pringlei. Am J Bot 87:469–481PubMedCrossRefGoogle Scholar
  46. Niklas KJ, Molina-Freaner F, Tinoco-Ojanguren C, Hogan CJ Jr, Paolillo DJ Jr (2003) On the mechanical properties of the rare endemic cactus Stenocereus eruca and the related species S. gummosus. Am J Bot 90:663–674PubMedCrossRefGoogle Scholar
  47. North GB, Nobel PS (1992) Drought-induced changes in hydraulic conductivity and structure in roots of Ferocactus acanthodes and Opuntia ficus-indica. New Phytol 120:9–19CrossRefGoogle Scholar
  48. Noshiro S, Suzuki M (2001) Ontogenetic wood anatomy of tree and subtree species of Nepalese Rhododendron (Ericaceae) and characterization of shrub species. Am J Bot 88:560–569PubMedCrossRefGoogle Scholar
  49. Noshiro S, Suzuki M, Ohba H (1995) Ecological wood anatomy of Nepalese Rhododendron (Ericaceae). I. Interspecific variation. J Plant Res 108:1–9CrossRefGoogle Scholar
  50. Nyffeler R (2002) Phylogenetic relations in the cactus family (Cactaceae). Based on evidence from TRNK/MATK and TRNL-TRNF sequences. Am J Bot 89:312–326PubMedCrossRefGoogle Scholar
  51. Olson ME (2003) Steam and leaf anatomy of the arborescent Cucurbitaceae Dendrosicyos socotrana with comments on the evolution of pachycauls from lianas. Plant Syst Evol 239:199–214CrossRefGoogle Scholar
  52. Olson ME (2005) Wood, bark, and pith anatomy in Pittocaulon (Senecio, Asteraceae): water storage and systematics. J Torrey Bot Soc 132:173–186CrossRefGoogle Scholar
  53. Olson ME, Rosell JA (2006) Using heterocrony to detect modularity in the evolution of stem diversity in the plant family Moringaceae. Evolution 60:724–734PubMedGoogle Scholar
  54. Ortega-Baes P, Sühring S, Sajama J, Sotola E, Alonso-Pedano M, Bravo S, Godínez-Alvarez H (2010) Diversity and conservation in the cactus family. In: Ramawat KG (ed) Desert plants. Springer, Berlin, pp 157–173CrossRefGoogle Scholar
  55. Panshin AJ, DeZeeuw C (1980) Textbook of wood technology. McGraw–Hill, New YorkGoogle Scholar
  56. Ruelle J, Yamamoto H, Thibaut B (2007) Growth stresses and cellulose structural parameters in tension and normal wood from three tropical rainforest angiosperms species. Bioresources 2:235–251Google Scholar
  57. Rury MP (1985) Systematic and ecological wood anatomy of the Erythroxylaceae. IAWA Bull ns 6:365–397Google Scholar
  58. Ruzin ES (1999) Plant microtechnique and microscopy. Oxford University Press, New YorkGoogle Scholar
  59. SAS Institute (2008) SAS procedure guide. Release 9.2. SAS Institute, CaryGoogle Scholar
  60. Sperry JS, Hacke UG, Pittermann J (2006) Size and function in conifer tracheids and angiosperm vessels. Am J Bot 93:1490–1500PubMedCrossRefGoogle Scholar
  61. Terrazas T, Arias S (2002) Comparative stem anatomy in the subfamily Cactoideae. Bot Rev 68:444–473CrossRefGoogle Scholar
  62. Terrazas T, Loza-Cornejo S (2003) Anatomía de la madera y alometría de veinte especies de Stenocereus (Cactaceae). An Inst Biol Univ Nac Aut México Bot 74:195–208Google Scholar
  63. Terrazas T, Mauseth JD (2002) Shoot anatomy and morphology. In: Nobel PS (ed) Cacti: biology and uses. University of California Press, Berkeley, pp 23–40Google Scholar
  64. Terrazas T, Aguilar-Rodríguez S, López-Mata L (2008) Anatomía de la madera de Buddleja I. (Buddlejaceae) y su relación con el tamaño de la planta y la latitud. Interciencia 33:46–50Google Scholar
  65. Yang S, Jiang Z, Ren H, Furukawa I (2007) Anatomical variations in wood among four native species of Leguminosae grown in arid areas of China. For Stud China 9:39–44CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Instituto de BiologíaUniversidad Nacional Autónoma de MéxicoMexico, D.F.Mexico

Personalised recommendations