Advertisement

Trees

, Volume 25, Issue 2, pp 311–322 | Cite as

Polycyclism, a fundamental tree growth process, decline with recent climate change: the example of Pinus halepensis Mill. in Mediterranean France

  • François Girard
  • Michel VennetierEmail author
  • Samira Ouarmim
  • Yves Caraglio
  • Laurent Misson
Original Paper

Abstract

Polycyclism, the ability for a plant to produce several flushes in the same growing season, is a key process of plant development. Polycyclism frequency is likely to change with the anticipated climate trend, expected to impact plant growth over the next century. However, polycyclism processes are not well described in the literature, and an important lack of knowledge prevents any possible prediction for the twenty-first century. Aleppo pine is a good model to study polycyclism: it is known to produce up to four annual flushes in one growing season. In this study, we used architectural analysis to describe and reconstruct polycyclism processes, periodicity and frequency on Aleppo pine in a Mediterranean site for the last 15 years. We also assessed relationships between polycyclism frequency and climate. Since 1995, climate was far hotter and drier than normal in South-eastern France: polycyclism was significantly reduced, particularly after 2003 heat-wave, which delayed effect remains till 2008, exacerbated by repeated droughts. Morphologically, polycyclism is primarily influenced by twig vigour, status (principal/secondary and strong axes) and position (low, middle or top crown). Climatically, it depends on summer temperatures of the current and preceding year, rainfall of the first half of preceding year and winter rainfall. Previous year abundant rainfall combined with colder temperatures and high rainfall in spring or at the end of summer of the current year increase tricyclism frequency. Polycyclism is likely to decrease significantly in the twenty-first century due to a hotter and drier climate.

Keywords

Polycyclism Aleppo pine Climate change Tree architecture Pinus halepensis Mediterranean forest Drought 

Notes

Acknowledgments

We would like to thank Christian Ripert, Roland Estève, Willy Martin, Aminata N’Diaye Boubacar, Frederic Faure-Brac, Asier Herrero and Maël Grauer for their assistance in the field and laboratory work, and Cody Didier for English revision. This research was funded by the French National Research Agency (DROUGHT+ project, no. ANR-06-VULN-003-04), the French Ministry for Ecology, Energy and Sustainable Development (GICC-REFORME project, no. MEED D4E CV05000007), the Conseil Général des Bouches-du-Rhône (CG13), ECCOREV Research Federation (FR3098) and CEMAGREF.

References

  1. Alia R, Durel CE (1998) Change over time of branching defects in Corsican black pine (Pinus nigra ssp. laricio var. corsicana) of central France provenance. Invest Agrar Sist Recur For 7(1/2):189–202Google Scholar
  2. Amato S, Vinzi VE (2003) Bootstrap-based (Q)over-cap(kh)(2) for the selection of components and variables in PLS regression. Chemom Intell Lab Syst 68(1–2):5–16CrossRefGoogle Scholar
  3. Barthelemy D, Caraglio Y (2007) Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Ann Bot 99(3):375–407PubMedCrossRefGoogle Scholar
  4. Borchert R (1994) Induction of rehydration and bud break by irrigation or rain in deciduous trees of a tropical dry forest in Costa-Rica. Trees Struct Funct 8(4):198–204Google Scholar
  5. Borghetti M, Cinnirella S, Magnani F, Saracino A (1998) Impact of long-term drought on xylem embolism and growth in Pinus halepensis Mill. Trees Struct Funct 12(4):187–195Google Scholar
  6. Borghetti M, Magnani F, Fabrizio A, Saracino A (2004) Facing drought in a Mediterranean post-fire community: tissue water relations in species with different life traits. Acta Oecol 25(1–2):67–72CrossRefGoogle Scholar
  7. Breda N, Huc R, Granier A, Dreyer E (2006) Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann For Sci 63(6):625–644CrossRefGoogle Scholar
  8. Bugnon P, Bugnon F (1951) Feuilles juvéniles et pousses multinodales chez le Pin maritime. Bull Soc Hist Nat Toulouse 86:18–23Google Scholar
  9. Caraglio Y, Barthelemy D (1997) A critical review of terms relevant to growth and branch development of vascular stems. In: Bouchon J, De Reffye P, Barthelemy D (eds) Modélisation et simulation de l'architecture des végétaux. INRA, Paris, pp 11–87Google Scholar
  10. Caraglio Y, Pimont F, Rigolot E (2007) Pinus halepensis architectural analysis for fuel modelling. In: Leone V, Loveglio R (eds) Proceedings, international workshop MEDPINE 3—conservation, regeneration and restoration of Mediterranean pines and their ecosystems, 26–30 Sep 2005, Bari, Italy. Centre International des Hautes Etudes Agronomiques Méditerranéennes Editions, Montpellier, FranceGoogle Scholar
  11. Ciais P, Reichstein M, Viovy N, Granier A, Ogee J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend AD, Friedlingstein P, Grunwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437(7058):529–533PubMedCrossRefGoogle Scholar
  12. Cramer RD, Bunce JD, Patterson DE, Frank IE (1988) Cross-validation, bootstrapping, and partial least-squares compared with multiple-regression in conventional QSAR studies. Quant Struct Act Relat 7(1):18–25CrossRefGoogle Scholar
  13. Debazac EF (1963) Morphologie et sexualité chez les pins. Rev For Fr 15:293–303CrossRefGoogle Scholar
  14. Deque M (2007) Frequency of precipitation and temperature extremes over France in an anthropogenic scenario: model results and statistical correction according to observed values. Glob Planet Change 57(1–2):16–26CrossRefGoogle Scholar
  15. DuMerle P, Mazet R (1983) Phenological stages and infestation by Tortrix Viridana L. (Lep, Tortricidae) of the buds of 2 oaks (Quercus pubescens and Q. ilex). Acta Oecol Oecol Appl 4(1):47–53Google Scholar
  16. Farjon A (2005) Pines: drawings and descriptions of the genus Pinus. Brill Academics Publishers, LeidenGoogle Scholar
  17. Fensham RJ, Fairfax RJ (2007) Drought-related tree death of savanna eucalypts: species susceptibility, soil conditions and root architecture. J Veg Sci 18(1):71–80CrossRefGoogle Scholar
  18. Gibelin AL, Deque M (2003) Anthropogenic climate change over the Mediterranean region simulated by a global variable resolution model. Clim Dyn 20(4):327–339Google Scholar
  19. Good P (1994) Permutation tests. Springer, New YorkGoogle Scholar
  20. Hesselbjerg-Christiansen J, Hewitson B (2007) Regional climate projection. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: the physical science basis contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 847–940Google Scholar
  21. Heuret P, Meredieu C, Coudurier T, Courdier F, Barthelemy D (2006) Ontogenetic trends in the morphological features of main stem annual shoots of Pinus pinaster (Pinaceae). Am J Bot 93(11):1577–1587CrossRefGoogle Scholar
  22. Houghton JT, Ding Y, Griggs DJ, Noguer M, Van der Linden PJ, Xiaosu D (2007) Climate change 2001: the scientific basis. In: Solomon S, Qin D, Manning M et al (eds) Contribution of working group 1 to the third assessment report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, CambridgeGoogle Scholar
  23. Isik F, Isik K, Yildirim T, Li BL (2002) Annual shoot growth components related to growth of Pinus brutia. Tree Physiol 22(1):51–58PubMedGoogle Scholar
  24. Kaya Z, Adams WT, Campbell RK (1994) Adaptive significance of intermittent shoot growth in Douglas-Fir seedlings. Tree Physiol 14(11):1277–1289PubMedGoogle Scholar
  25. Kramer K, Leinonen I, Loustau D (2000) The importance of phenology for the evaluation of impact of climate change on growth of boreal, temperate and Mediterranean forests ecosystems: an overview. Int J Biometeorol 44(2):67–75PubMedCrossRefGoogle Scholar
  26. Kremer A, Roussel G (1982) Components of height growth in maritime pine (Pinus Pinaster Ait). Ann Sci For 39(1):77–97CrossRefGoogle Scholar
  27. Kremer A, Roussel G (1986) Subdivision of shoot growth of maritime pine (Pinus Pinaster Ait)—geographic-variation of morphogenetical and phenological components. Ann Sci For 43(1):15–33CrossRefGoogle Scholar
  28. Kremer A, Nguyen A, Lascoux M, Roussel G (1990) Morphogénèse de la tige principale et croissance primaire du pin maritime (Pinus pinaster Ait). In: Kremer A, Nguyen A, Lascoux M, Roussel G (eds) De la forêt cultivée à l’industrie de demain, Actes du 3ème colloque sciences et industries du bois. ARBORA, Bordeaux, pp 333–338Google Scholar
  29. Le Houerou HN (2005) The isoclimatic mediterranean biomes: bioclimatology, diversity and phytogeography, vols 1, 2. Copymania Publication, MontpellierGoogle Scholar
  30. Leuschner C, Backes K, Hertel D, Schipka F, Schmitt U, Terborg O, Runge M (2001) Drought responses at leaf, stem and fine root levels of competitive Fagus sylvatica L. and Quercus petraea (Matt.) Liebl. trees in dry and wet years. For Ecol Manage 149(1–3):33–46CrossRefGoogle Scholar
  31. Lookingbill TR, Zavala MA (2000) Spatial pattern of Quercus ilex and Quercus pubescens recruitment in Pinus halepensis dominated woodlands. J Veg Sci 11(4):607–612CrossRefGoogle Scholar
  32. Lopez-Serrano FR, Jdl Heras, Gonzalez-Ochoa AI, Garcia-Morote FA (2005) Effects of silvicultural treatments and seasonal patterns on foliar nutrients in young post-fire Pinus halepensis forest stands. For Ecol Manage 210(1/3):321–336CrossRefGoogle Scholar
  33. Masotti V, Barthelemy D, Mialet I, Sabatier S, Caraglio Y (1995) Study on the effect of the environment on the growth, branching and architecture of the atlas cedar, Cedrus atlantica (Endl) Manetti ex Carriere. Arch For Fruit Trees (74):175–189Google Scholar
  34. MétéoFrance (2009) Données météorologiques des stations d’Aubagne, Gémenos, Cuges-les-pins (data from the National Meteorological Survey Network)Google Scholar
  35. Monange Y (1961) Le froid de l’hiver 1956 et l’anatomie du bois de quelques gymnospermes. Bull Soc Hist Nat Toulouse 96:1–6Google Scholar
  36. Nahal I (1962) Le Pin d’Alep (Pinus halepensis Mill.) Étude taxonomique, phytogéographique, écologique et sylvicole, vol 19. Annales de l’École des Sciences de la Nature, des eaux et des Forêts, NancyGoogle Scholar
  37. Ogaya R, Peñuelas J, Martínez-Vilalta J, Mangirón M (2003) Effect of drought on diameter increment of Quercus ilex, Phillyrea latifolia, and Arbutus unedo in a holm oak forest of NE Spain. For Ecol Manage 180(1–3):175–184CrossRefGoogle Scholar
  38. Opler PA, Frankie GW, Baker HG (1975) Rainfall as a factor in the release, timing, and synchronization of anthesis by tropical trees and shrubs. J Biogeogr 3(3):231–236CrossRefGoogle Scholar
  39. Orshan G (1989) Plant pheno-morphological studies in Mediterranean type ecosystems. Kluwer, DordrechtGoogle Scholar
  40. Pardos M, Climent J, Gil L, Pardos JA (2003) Shoot growth components and flowering phenology in grafted Pinus halepensis Mill. Trees Struct Funct 17(5):442–450CrossRefGoogle Scholar
  41. Plourde A (2007) Croissance, développement et architecture des structures aériennes et souterraines de pins gris (Pinus banksiana Lamb.) dans un peuplement naturel et une plantation. Thèse de doctorat (Université du Québec à Chicoutimi), Chicoutimi: Université du Québec à Chicoutimi; Montréal: Université du Québec à MontréalGoogle Scholar
  42. R Development Core Team (2004) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  43. Rathgeber C, Nicault A, Guiot J, Keller T, Guibal F, Roche P (2000) Simulated responses of Pinus halepensis forest productivity to climatic change and CO2 increase using a statistical model. Glob Planet Change 26(4):405–421CrossRefGoogle Scholar
  44. Rathgeber CBK, Misson L, Nicault A, Guiot J (2005) Bioclimatic model of tree radial growth: application to the French Mediterranean Aleppo pine forests. Trees Struct Funct 19(2):162–176Google Scholar
  45. Richardson DM (1988) Ecology and biogeography of Pinus. Cambridge University Press, CambridgeGoogle Scholar
  46. Rushforth K (1999) Trees of Britain and Europe. Cambridge University Press, CambridgeGoogle Scholar
  47. Sabatier S, Baradat P, Barthelemy D (2003) Intra- and interspecific variations of polycyclism in young trees of Cedrus atlantica (Endl.) Manetti ex. Carriere and Cedrus libani A. Rich (Pinaceae). Ann For Sci 60(1):19–29CrossRefGoogle Scholar
  48. Sardans J, Peñuelas J (2007) Drought changes the dynamics of trace element accumulation in a Mediterranean Quercus ilex forest. Environ Pollut 147(3):567–583PubMedCrossRefGoogle Scholar
  49. Schiller G, Cohen Y (1995) Water regime of a pine forest under a Mediterranean climate. Agric For Meteorol 74(3–4):181–193CrossRefGoogle Scholar
  50. Serre F (1976) Les rapports de la croissance et du climat chez le pin d’Alep (Pinus halepensis (Mill)) II L’allongement des pousses et des aiguilles, et le climat Discussion Générale. Oecol Plant 11(3):201–224Google Scholar
  51. Thabeet A, Vennetier M, Gadbin-Henry C, Denelle N, Roux M, Caraglio Y, Vila B (2009) Response of Pinus sylvestris L. to recent climatic events in the French Mediterranean region. Trees Struct Funct 23(4):843–853Google Scholar
  52. Thioulouse J, Chessel D, Doledec S, Olivier JM (1997) ADE-4: a multivariate analysis and graphical display software. Stat Comput 7(1):75–83CrossRefGoogle Scholar
  53. Vennetier M, Herve JC (1999) Short and long term evolution of Pinus halepensis (Mill.) height growth in Provence (France) and its consequences for timber production. In: Proceedings of the 27th EFI of causes and consequences of accelerating tree growth in Europe, vol 27, pp 253–265Google Scholar
  54. Vennetier M, Ripert C (2009) Forest flora turnover with climate change in the Mediterranean region: a case study in Southeastern France. For Ecol Manage 258:S56–S63CrossRefGoogle Scholar
  55. Vennetier M, Vila B, Liang EY, Guibal F, Ripert C, Chandioux O (2007) Impact of climatic change and of the hot summer of 2003 on the productivity and area of distribution of Scots pine and Aleppo pine in the Mediterranean region. RenDez-Vous Techniques (hors-serie 3), pp 67–73Google Scholar
  56. Verdu M, Climent J (2007) Evolutionary correlations of polycyclic shoot growth in Acer (Sapindaceae). Am J Bot 94(8):1316–1320CrossRefGoogle Scholar
  57. Weinstein A (1989) Geographic-variation and phenology of Pinus halepensis, Pinus brutia and Pinus eldarica in Israel. For Ecol Manage 27(2):99–108CrossRefGoogle Scholar
  58. Wold S (1995) PLS for multivariate linear modelling. In: van de Waterbeemd H (ed) Chemometric methods in molecular design. VCH, Weinheim, pp 195–218Google Scholar
  59. Zaitchik BF, Macalady AK, Bonneau LR, Smith RB (2006) Europe’s 2003 heat wave: a satellite view of impacts and land-atmosphere feedbacks. Int J Clim 26(6):743–769CrossRefGoogle Scholar
  60. Zavala MA, Espelta JM, Retana J (2000) Constraints and trade-offs in Mediterranean plant communities: the case of holm oak-Aleppo pine forests. Bot Rev 66(1):119–149CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • François Girard
    • 1
  • Michel Vennetier
    • 1
    Email author
  • Samira Ouarmim
    • 1
  • Yves Caraglio
    • 2
  • Laurent Misson
    • 3
  1. 1.Ecosystèmes Méditerranéens et Risques, CEMAGREFAix en Provence CedexFrance
  2. 2.UMR AMAP, CIRADMontpellier Cedex 5France
  3. 3.Centre d’Ecologie Fonctionnelle et Evolutive (CEFE), CNRSMontpellier Cedex 5France

Personalised recommendations