Skip to main content

Effects of environmental factors on pollen production in anemophilous woody species

Abstract

The aim of this study was to estimate the amount of pollen produced by anemophilous woody taxa with allergenic properties and with considerable contribution in the concentration of pollen in the air of a Mediterranean city (Thessaloniki, Greece). The taxa selected are Corylus avellana, Cupressus sempervirens var. horizontalis and var. pyramidalis, Olea europaea and Platanus orientalis; each was studied in more than one sampling stations differing in elevation, direction or both. O. europaea produced the highest number of pollen grains per flower (1.3 × 105 ± 0.1 × 105) and P. orientalis the highest per inflorescence (3.3 × 106 ± 0.2 × 106). At the level of crown, pollen grains produced were of the order of 109 per surface/volume unit for O. europaea and the two C. sempervirens varieties; for the other two taxa, they were of the order of 106. Pollen production was lower at higher elevation and northern direction and depended on the size of the floral unit sampled (flower for O. europaea, inflorescence for all other species): the bigger the floral unit, the more pollen it contained. Our results and reports from other areas, where C. sempervirens and O. europaea grow, show that these two Mediterranean species produce comparable amounts of pollen at the levels of inflorescence or flower, respectively, wherever they occur.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Allison TD (1990) Pollen production and plant density affect pollination and seed production in Taxus canadensis. Ecology 7:516–522

    Article  Google Scholar 

  2. Bera SK (1990) Palynology of Shorea robusta (Dipterocarpaceae) in relation to pollen production and dispersal. Grana 29:251–255

    Article  Google Scholar 

  3. Beri SM, Anand SC (1971) Factors affecting pollen shedding capacity in wheat. Euphytica 20:327–332

    Article  Google Scholar 

  4. Beyer WH (1984) Standard mathematical tables, 27th edn. CRC Press, Boca Raton

    Google Scholar 

  5. Bhattacharya A, Mondal S, Mandal S (1999) Entomophilous pollen incidence with reference to atmospheric dispersal in eastern India. Aerobiologia 15:311–315

    Article  Google Scholar 

  6. Bricchi E, Frenguelli G, Mincigrucci G (2000) Experimental results about Platanus pollen deposition. Aerobiologia 16:347–352

    Article  Google Scholar 

  7. Campbell DR, Halama KJ (1993) Resource and pollen limitations to lifetime seed production in a natural plant population. Ecology 74:1043–1051

    Article  Google Scholar 

  8. Cruden RW (1977) Pollen–ovule ratios. A conservative indicator of breeding systems in flowering plants. Evolution 31:32–46

    Article  Google Scholar 

  9. Cuevas J, Polito VS (2004) The role of staminate flowers in the breeding system of Olea europaea (Oleaceae): an andromonoecious, wind-pollinated taxon. Ann Bot 93:547–553

    PubMed  Article  Google Scholar 

  10. Damialis A (2010) Patterns of pollen production and atmospheric circulation in the area of Thessaloniki, PhD dissertation. Aristotle University of Thessaloniki [in Greek with English summary]

  11. Damialis A, Halley JM, Gioulekas D, Vokou D (2007) Long-term trends in atmospheric pollen levels in the city of Thessaloniki, Greece. Atmos Environ 41:7011–7021

    Article  CAS  Google Scholar 

  12. Davarynejad GH, Szabó Z, Nyéki J, Szabó T (2008) Phenological stages, pollen production level, pollen viability and in vitro germination capability of some sour cherry cultivars. Asian J Plant Sci 7:672–676

    Article  Google Scholar 

  13. de Vries APh (1971) Flowering biology of wheat, particularly in view of hybrid seed production. A review. Euphytica 20:152–170

    Article  Google Scholar 

  14. de Vries APh (1974) Some aspects of cross-pollination in wheat (Triticum aestivum L.) Anther length and number of pollen grains per anther. Euphytica 23:11–19

    Article  Google Scholar 

  15. Díaz de la Guardia C, Alba F, de Linares C, Nieto-Lugilde D, López Caballero J (2006) Aerobiological and allergenic analysis of Cupressaceae pollen in Granada (Southern Spain). J Invest Allerg Clin Immunol 16:24–33

    Google Scholar 

  16. Faegri K, Iversen J (1989) In: Faegri K, Kalland PE, Krzywinski K (eds) Textbook of pollen analysis, 4th edn. Wiley, Chichester

  17. Ferrara G, Camposeo S, Palasciano M, Godini A (2007) Production of total and stainable pollen grains in Olea europaea L. Grana 46:85–90

    Article  Google Scholar 

  18. Fotiou C, Damialis A, Krigas N, Halley JM, Vokou D (2010) Parietaria judaica flowering phenology, pollen production, viability and atmospheric circulation, and expansive ability in the urban environment: impacts of environmental factors. Int J Biometeorol (in press)

  19. Fumanal B, Chauvel B, Bretagnolle F (2007) Estimation of pollen and seed production of common ragweed in France. Ann Agric Environ Med 14:233–236

    PubMed  Google Scholar 

  20. Giantomasi MA, Roig Juñent FA, Villagra PE, Srur AM (2009) Annual variation and influence of climate on the ring width and wood hydrosystem of Prosopis flexuosa DC trees using image analysis. Trees 23:117–126

    Article  Google Scholar 

  21. Gioulekas D, Papakosta D, Damialis A, Spieksma FThM, Giouleka P, Patakas D (2004) Allergenic pollen records (15 years) and sensitization in patients with respiratory allergy in Thessaloniki, Greece. Allergy 59:178–184

    Article  Google Scholar 

  22. Gomez-Casero MT, Hidalgo PJ, García-Mozo H, Domínguez E, Galán C (2004) Pollen biology in four Mediterranean Quercus species. Grana 43:22–30

    Article  Google Scholar 

  23. Guardia R, Belmonte J (2004) Phenology and pollen production of Parietaria judaica L. in Catalonia (NE Spain). Grana 43:57–64

    Article  Google Scholar 

  24. Hall AJ, Vilella F, Trapani N, Chimenti C (1982) The effects of water stress and genotype on the dynamics of pollen-shedding and silking in maize. Field Crops Res 5:349–363

    Article  Google Scholar 

  25. Hidalgo PJ, Galán C, Domínguez E (1999) Pollen production of the genus Cupressus. Grana 38:296–300

    Article  Google Scholar 

  26. Hill SJ, Stephenson DW, Taylor BK (1985) Almond pollination studies: pollen production and viability, flower emergence and cross-pollination tests. Austr J Exp Agr 25:697–704

    Article  Google Scholar 

  27. Hyde HA, Williams DA (1946) Studies in atmospheric pollen. III. Pollen production and pollen incidence in ribwort plantain (Plantago lanceolata L.). New Phytol 45:271–277

    Article  Google Scholar 

  28. Jablonski LM, Wang XZ, Curtis PS (2002) Plant reproduction under elevated CO2 conditions: a meta-analysis of reports on 79 crop and wild species. New Phytol 156:9–26

    Article  Google Scholar 

  29. Jato V, Rodríguez-Rajo FJ, Aira MJ (2007a) Use of phenological and pollen-production data for interpreting atmospheric birch pollen curves. Ann Agric Environ Med 14:271–280

    PubMed  Google Scholar 

  30. Jato V, Rodríguez-Rajo FJ, Aira MJ (2007b) Use of Quercus ilex subsp. ballota phenological and pollen-production data for interpreting Quercus pollen curves. Aerobiologia 23:91–105

    Article  Google Scholar 

  31. Joppa IR, McNeal FH, Berg MA (1968) Pollen production and pollen shedding of hard red spring (Triticum aestivum L. em. Thell.) and durum (T. durum Desf.) wheats. Crop Sci 8:487–490

    Article  Google Scholar 

  32. Khanduri VP, Sharma CM (2002a) Pollen production, microsporangium and pollen flow in Himalayan cedar (Cedrus deodara Roxb. Ex D. Don). Ann Bot 89:587–593

    PubMed  Article  CAS  Google Scholar 

  33. Khanduri VP, Sharma CM (2002b) Pollen productivity variations. Pollen–ovule ratio and sexual selection in Pinus roxburghii. Grana 41:29–38

    Article  Google Scholar 

  34. Khanduri VP, Sharma CM (2009) Cyclic pollen production in Cedrus deodara. Sex Plant Reprod 22:53–61

    PubMed  Article  Google Scholar 

  35. LaDeau SL, Clark JS (2006) Pollen production by Pinus taeda growing in elevated atmospheric CO2. Funct Ecol 20:541–547

    Article  Google Scholar 

  36. Larese Filon F, Bosco A, Barbina P, Sauli ML, Rizzi Longo L (2000) Betulaceae and Corylaceae in Trieste (NE-Italy): Aerobiological and clinical data. Aerobiologia 16:87–91

    Article  Google Scholar 

  37. Lau TC, Stephenson AG (1993) Effects of soil-nitrogen on pollen production, pollen grain size, and pollen performance in Cucurbita pepo (Cucurbitaceae). Am J Bot 80:763–768

    Article  CAS  Google Scholar 

  38. Levanič T, Gričar J, Gagen M, Jalkanen R, Loader NJ, McCarroll D, Oven P, Robertson I (2009) The climate sensitivity of Norway spruce [Picea abies (L.) Karst.] in the southeastern European Alps. Trees 23:169–180

    Article  Google Scholar 

  39. Martín-Benito D, Cherubini P, del Río M, Cañellas I (2008) Growth response to climate and drought in Pinus nigra Arn. trees of different crown classes. Trees 22:363–373

    Article  Google Scholar 

  40. Matis KG (1994) Forest biometry. ΙΙ. Dendrometry. G. Dedousis, Thessaloniki, pp 105–107 (in Greek)

  41. McKone MJ (1990) Characteristics of pollen production in a population of New Zealand snow-tussock grass (Chionochloa pallens Zotov). New Phytol 116:555–562

    Article  Google Scholar 

  42. Moe D (1998) Pollen production of Alnus incana at its south Norwegian altitudinal ecotone. Preliminary observations. Grana 37:35–39

    Article  Google Scholar 

  43. Mondal AK, Mandal S (1998) Pollen production in some terrestrial angiosperms. Curr Sci 74:906–910

    Google Scholar 

  44. Moore PD, Webb JA, Collinson ME (1991) Pollen analysis, 2nd edn. Blackwell Scientific Publications, London, pp 42–46 and 181–182

    Google Scholar 

  45. Oliveira G, Correia O, Martins-Loução MA, Catarino FM (1994) Phenological and growth patterns of the Mediterranean oak Quercus suber L. Trees 9:41–46

    Article  Google Scholar 

  46. Palmer RG, Albertsen MC, Heer H (1978) Pollen production in soybeans with respect of genotype, environment and stamen position. Euphytica 27:427–433

    Article  Google Scholar 

  47. Prieto-Baena JC, Hidalgo PJ, Domínguez E, Galán C (2003) Pollen production in the Poaceae family. Grana 42:153–160

    Article  Google Scholar 

  48. Rogers CA (1993) Application of aeropalynological principles in paleoecology. Rev Palaeobot Palynol 79:133–140

    Article  Google Scholar 

  49. Rogers CA, Wayne PM, Macklin EA, Muilenberg ML, Wagner CJ, Epstein PR, Bazzaz FA (2006) Interaction of the onset of spring and elevated atmospheric CO2 on ragweed (Ambrosia artemisiifolia L.) pollen production. Environ Health Perspect 114:865–869

    PubMed  Article  CAS  Google Scholar 

  50. Sapra VT, Hughes JL (1975) Pollen production in hexaploid triticale. Euphytica 24:237–243

    Article  Google Scholar 

  51. Shivanna KR, Rangaswamy NS (1992) Pollen biology. A laboratory manual. Springer, Berlin

    Google Scholar 

  52. Spalik K, Woodell SRJ (1994) Regulation of pollen production in Anthriscus sylvestris, an andromonoecious species. Int J Plant Sci 155:750–754

    Article  Google Scholar 

  53. Subba Reddi C, Reddi NS (1986) Pollen production in some anemophilous angiosperms. Grana 25:55–61

    Article  Google Scholar 

  54. Suzuki AA, Suzuki M (2009) Why do lower order branches show greater shoot growth than higher order branches? Considering space availability as a factor affecting shoot growth. Trees 23:69–77

    Google Scholar 

  55. Tormo Molina R, Muñoz Rodríguez A, Silva Palacios I, Gallardo López F (1996) Pollen production in anemophilous trees. Grana 35:38–46

    Article  Google Scholar 

  56. Vidal-Martínez VA, Clegg MD, Johnson BE, Osuna-García JA, Coutiño-Estrada B (2004) Phenotypic plasticity and pollen production components in maize. Agrociencia 38:273–284

    Google Scholar 

  57. Wan S, Yuan T, Bowdish S, Wallace L, Russell SD, Luo Y (2002) Response of an allergenic species, Ambrosia psilostachya (Asteraceae), to experimental warming and clipping: implications for public health. Am J Bot 89:1843–1846

    Article  Google Scholar 

  58. Wayne P, Foster S, Connolly J, Bazzaz F, Epstein P (2002) Production of allergenic pollen by ragweed (Ambrosia artemisiifolia L.) is increased in CO2-enriched atmospheres. Ann Allerg Asthma Immunol 88:279–282

    Article  Google Scholar 

  59. Westgate ME, Lizaso J, Batchelor W (2003) Quantitative relationships between pollen shed density and grain yield in maize. Crop Sci 43:934–942

    Article  Google Scholar 

  60. Ziska LH, Caulfield FA (2000) Rising CO2 and pollen production of common ragweed (Ambrosia artemisiifolia), a known allergy-inducing species: implications for public health. Aust J Plant Physiol 27:893–898

    Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Operational Programme ‘Education and Initial Vocational Training’ (PYTHAGORAS II).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Athanasios Damialis.

Additional information

Communicated by J. Carlson.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Damialis, A., Fotiou, C., Halley, J.M. et al. Effects of environmental factors on pollen production in anemophilous woody species. Trees 25, 253–264 (2011). https://doi.org/10.1007/s00468-010-0502-1

Download citation

Keywords

  • Airborne pollen
  • Climate change
  • Forest species
  • Mediterranean vegetation
  • Pollen dynamics
  • Reproductive output