Skip to main content

Single primer amplification reaction (SPAR) reveals intra-specific natural variation in Prosopis cineraria (L.) Druce

Abstract

Prosopis cineraria, an important multipurpose tree and vital component of the otherwise fragile ecosystem of arid and semiarid regions of India. It is highly drought tolerant and sprouts profusely during the extreme dry summer months when most other trees are leafless. P. cineraria is known to exhibit comparable genetic variations at intra-specific and inter-population levels reflected through morphological and cytogenetical diversity in regions, where this plant grows naturally. In the present study, single primer amplification reaction (SPAR) methods have been used for determination of diversity at DNA level in 30 accessions of P. cineraria collected from different districts of Rajasthan. The analyses include the use of six minisatellite core sequence primers for direct amplification of minisatellite DNA (DAMD), eight inter simple sequence repeats (ISSR) and 20 arbitrary primed decamer sequences for random amplification (RAPD) reactions. Upon analysis of the data generated, all the three SPAR methods, either independently and/or in combination, revealed wide range of genetic variation among accessions. Comparison of matrix of individual SPAR method using MxComp component of NTSYS-pc 2.02 K software proving that analysis of natural genetic variation using combination of SPAR methods particularly ISSR and DAMD, rather than an isolated approach, is very effective. Such an approach also yields better information and reflection of the relatedness and affinities at intra-species and inter-population levels. Therefore, it is opined that in order to reveal the intrinsic intra-specific variation, SPAR approaches involving more than one DNA marker may reveal more authentic genetic variation in tropical tree species like P. cineraria.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Arya S, Bisht RP, Tomar R, Toky OP, Harris PJC (1995) Genetic variation in minerals, crude protein and structural carbohydrates of foliage in provenances of young plants of Prosopis cineraria (L.) Druce in India. Agrofor Syst 29:1–7

    Article  Google Scholar 

  2. Bhandari MM (1978) Flora of the Indian desert. Scientific Publishers, Jodhpur

    Google Scholar 

  3. Bhattacharya E, Dandin SB, Ranade SA (2005) Single primer amplification methods reveal exotic and indigenous mulberry varieties are similarly diverse. J Biosci 30:669–677

    CAS  Article  PubMed  Google Scholar 

  4. Bhattacharya E, Ranade SA (2001) RAPD and DAMD profile differences amongst mulberry varieties. BMC Plant Biol 1:3 (http://www.biomedcentral.com/content/pdf/1471-2229-1-3.pdf)

  5. Burdak LR (1982) Recent advances in desert afforestation. Dissertation submitted to Shri R.N. Kaul, Director, Forestry Research, F.R.I., Dehra Dun

  6. Burkart A (1976) A monograph of the genus Prosopis (Leguminosae, Subfamily Mimosoideae). J Arnold Arbor 57:219–249

    Google Scholar 

  7. Ferreyra LI, Bessega C, Vilardi JC, Saidman BO (2004) First report on RAPDs patterns able to differentiate some Argentinean species of section Algarobia (Prosopis, Leguminosae). Genetica 121:33–42

    CAS  Article  PubMed  Google Scholar 

  8. Ferreyra LI, Bessega C, Vilardi JC, Saidman BO (2007) Consistency of population genetics parameters estimated from isozyme and RAPDs dataset in species of genus Prosopis (Leguminosae, Mimosoideae). Genetica 131:217–230

    CAS  Article  PubMed  Google Scholar 

  9. Gates PJ, Brown K (1988) Acacia tortilis and Prosopis cineraria: leguminous trees for and areas. Outlook Agric 17:61–64

    Google Scholar 

  10. Goswami M, Ranade SA (1999) Analysis of variations in RAPD profiles among accessions of Prosopis. J Genet 78:141–147

    CAS  Article  Google Scholar 

  11. Gupta M, Chyi YS, Romero-Severson J, Owen JL (1994) Amplification of DNA markers from evolutionarily diverse genomes using single primers of SSRs. Theor Appl Genet 89:998–1006

    CAS  Article  Google Scholar 

  12. Heath DD, Iwana GK, Delvin RH (1993) PCR primed with VNTR core sequences yield species specific patterns and hypervariable probes. Nucleic Acids Res 21:5782–5785

    CAS  Article  PubMed  Google Scholar 

  13. Hickey A, Singer GAC (2004) Genomic and proteomic adaptations to growth at high temperature. Genome Biol 5:117

    Article  PubMed  Google Scholar 

  14. Hunziker JH, Saidman BO, Naranjo CA, Palacois RA, Poggio L, Burghardt AD (1986) Hybridization and genetic variation of Argentine species of Prosopis. For Ecol Manage 16:301–315

    Article  Google Scholar 

  15. Jaccard P (1901) Etude comparative de la distribution orale dans une portion des Alpes et des Jura. Bull Soc Vaudoise Sci Nat 37:547–579

    Google Scholar 

  16. Kaul RN (1967) Trees or grass lands in the Rajasthan—old problems and new approaches. Indian For 93:434–435

    Google Scholar 

  17. Lamarque AL, Maestri DM, Grosso NR, Zygadlo JA, Guzman CA (1994) Proximate composition and seed lipid components of some Prosopis (Leguminosae) from Argentina. J Sci Food Agric 66:323–326

    CAS  Article  Google Scholar 

  18. Leakey RB, Last FT (1980) Biology and potential of Prosopis species in arid environment with particular reference to P. cineraria. J Arid Environ 3:9–24

    Google Scholar 

  19. Mahoney D (1990) Trees of Somalia—a field guide for development workers. Oxfam/HDRA, Oxford, pp 133–136

    Google Scholar 

  20. Mann HS, Shankarnarayan KA (1980) The role of Prosopis cineraria in an agropastoral system in Western Rajasthan. In: LeHouerou HN (ed) Browse in Africa. International Livestock Centre for Africa, Addis Ababa, pp 437–442

    Google Scholar 

  21. Mertia RS, Prasad R, Kandpal BK, Narain P (2006) Regeneration of Lasiurus sindicus in relation to grazing pressure Rajasthan (India). Trop Grassl 40:40–44

    Google Scholar 

  22. Murray HG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    CAS  Article  PubMed  Google Scholar 

  23. Naranjo CA, Poggio L, Zeiger SE (1984) Phenol chromatography, morphology and cytogenetics in three species and natural hybrids of Prosopis (Leguminosae, Mimisoideae). Plant Syst Evol 144:257–276

    CAS  Article  Google Scholar 

  24. Pant GB, Hingane LS (2006) Climatic changes in and around the Rajasthan desert during the 20th century. Int J Climatol 4:391–401

    Google Scholar 

  25. Pavlicek A, Hrda S, Flegr J (1999) FreeTree—freeware program for construction of phylogenetic trees on the basis of distance data and bootstrapping/jackknife analysis of the tree robustness. Application in the RAPD analysis of the genus Frenkelia. Folia Biol (Praha.) 4:597–599

    Google Scholar 

  26. Ranade SA, Farooqui N (2002) Assessment of profile variations amongst provenances of neem using single-primer amplification reaction (SPAR) methods. Mol Biol Today 3:1–10

    CAS  Google Scholar 

  27. Ranade SA, Rana TS, Narzary D (2009) SPAR profile and genetic diversity amongst pomegranate (Punica granatum L.) genotypes. Physiol Mol Biol Plants 15:61–70

    CAS  Article  Google Scholar 

  28. Rawat D, Kumar A, Rao SR (2007) Studies on cytogenetical variation in Prosopis cineraria (Linn.) Druce—a key stone tree species of Indian desert. Silvae Genet 56:184–189

    Google Scholar 

  29. Sahni KC (1998) The book of Indian trees. Bombay natural history society, Mumbai

    Google Scholar 

  30. Saidman BO, Vilardi JC (1987) Analysis of genetic similarities among seven species of Prosopis Leguminosae: Mimosoideae. Theor Appl Genet 75:109–116

    Article  Google Scholar 

  31. Saxena S, Chandra R, Srivastava AP, Mishra M, Pathak RK, Ranade SA (2005) Analysis of genetic diversity among papaya cultivars using Single Primer Amplification Reaction (SPAR) methods. J Hortic Sci Biotechnol 80:291–296

    CAS  Google Scholar 

  32. Sinha BC (2001) Book of state animal, bird, tree and flower of India. Wildlife Institute of India, Dehra Dun, p 24

    Google Scholar 

  33. Srivastava AP, Chandra R, Ranade SA (2005) Applicability of PCR based molecular markers for parentage analysis of three commercial mango hybrids. Indian J Plant Breed Genet 64:275–280

    Google Scholar 

  34. Srivastava AP, Chandra R, Saxena S, Rajan S, Ranade SA, Prasad V (2007) A PCR-based assessment of genetic diversity, and parentage analysis among commercial mango cultivars and hybrids. J Hortic Sci Biotech 82:951–959

    CAS  Google Scholar 

  35. Strelchenko P, Kovalyova O, Okuno K (1999) Genetic differentiation and geographical distribution of Barley Germplasm based on RAPD markers. Genet Resour Crop Evol 46:193–205

    Article  Google Scholar 

  36. Trivedi S (2003) Do microsatellites have biased associations. Nucleus 46:61–76

    Google Scholar 

  37. Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18:7213–7218

    CAS  Article  PubMed  Google Scholar 

  38. Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl Acids Res 18:6531–6535

    CAS  Article  PubMed  Google Scholar 

  39. Wood HM, Grahame JW, Humphray S, Rogers J, Butlin RK (2008) Sequence differentiation in regions identified by a genome scan for local adaptation. Mol Ecol 17:3123–3135

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rama Rao Satyawada.

Additional information

Communicated by F. Canovas.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sharma, S.K., Rawat, D., Kumar, S. et al. Single primer amplification reaction (SPAR) reveals intra-specific natural variation in Prosopis cineraria (L.) Druce. Trees 24, 855–864 (2010). https://doi.org/10.1007/s00468-010-0455-4

Download citation

Keywords

  • RAPD
  • ISSR
  • DAMD
  • NJ tree
  • Clustering