, Volume 24, Issue 5, pp 797–808 | Cite as

Analysing the long-term effects of artificial pruning of wild cherry by computer tomography

  • Thomas SeifertEmail author
  • Martin Nickel
  • Hans Pretzsch
Original Paper


The wild cherry (Prunus avium L.) is a species that does not exhibit fast natural pruning. Artificial pruning is consequently a prerequisite for the production of valuable timber, which is at the same time often accompanied by unwanted decay that decreases wood quality. This study aims to reveal the factors affecting the speed of branch stub occlusion, and the relationship between stub occlusion and the subsequent formation of decay within stem wood. For this study, 11- and 23-year-old wild cherry trees with documented pruning history were sampled at two experimental sites in Bavaria with varying site class, spacing and thinning variants. The wood structure of the specimens was analysed by computer tomography (CT scanning), which allows for the examination of occlusion of pruned knots as well as the presence of decay. No significant differences between the branch diameters determined by CT scanning and manual measurement were found, proving the reliability of measurements from CT scans. Decay reduced the wood density by 40–60% compared to sound wood. Even small fluctuations in wood density caused by decay that were not visually recognisable could be detected in the CT images. The results suggest that the speed of stub occlusion is significantly positively affected by the diameter growth of the tree stem. The average wound occlusion was 1.3 mm per 1 mm stem diameter growth with a significant difference between sites. A relation between stub occlusion duration and the presence of decay was also found. Serious decay was detected after 3 years on the better, and after 4 years on the less favourable site. Based on these results, reliable pruning recommendations could be derived with regards to maximum branch diameter for pruning depending on a tree’s specific diameter growth, without risking severe stem decay.


Prunus avium CT scanning Wound occlusion Stub occlusion Decay Guidelines for pruning Non-destructive testing of wood 



The authors wish to thank the Deutsche Forschungsgemeinschaft DFG for providing funds for forest growth and yield research as part of the Sonderforschungsbereich SFB 607 “Growth and Parasite Defense”, the Bavarian State Ministry for Agriculture and Forestry for permanent support of the project W 07 “Long-term experimental plots for forest growth and yield research”, and Siemens AG for the generous donation of the CT scanner for forest science purposes. We also wish to express our gratitude to Dr Martina Meincken from the Department of Forest and Wood Science, Stellenbosch University, for her helpful comments on the manuscript and Mr William Esler and Mr Iain Cottontail for the language revision. We also wish to thank the two anonymous reviewers for their helpful comments.


  1. Anderson EA (1951) Healing time for pruned Douglas-fir. USDA For Serv Tech Rep No. R1907Google Scholar
  2. Balandier P (1997) A method to evaluate needs and efficiency of formative pruning of fast-growing broad-leaved trees and results of an annual pruning. Can J For Res 27:809–816CrossRefGoogle Scholar
  3. Balandier P, Dupraz C (1999) Growth of widely spaced trees. A case study from young agroforestry plantations in France. Agrofor Syst 43:151–167CrossRefGoogle Scholar
  4. Barry KM, Hall MF, Mohammed CL (2005) The effect of time and site on incidence and spread of pruning-related decay in plantation-grown Eucalyptus nitens. Can J For Res 35:495–502CrossRefGoogle Scholar
  5. Bredenkamp BV, Malan FS, Conradie WE (1980) Some effects of pruning on growth and timber quality of Eucalyptus grandis in Zululand. S Afr For J 114:29–34Google Scholar
  6. Brunn G (1931) Untersuchungen über die Astreinigung von Fichtenbeständen. Mitteilungen aus Fortwirtschaft und Forstwissenschaft 2:35–507Google Scholar
  7. Castell W, Schrödl S, Seifert T (2005) Volume interpolation of CT images from tree trunks. Plant Biol 7:737–744CrossRefPubMedGoogle Scholar
  8. Cieslar A, Janka G (1902) Studien über die Qualität rasch erwachsenen Fichtenholzes. Centralblatt für das gesamte Forstwesen 337–403Google Scholar
  9. Finnis JM (1953) Experimental pruning of Douglas-fir in British Columbia. B.C. For Serv Res Notes, 24Google Scholar
  10. Glass BP, McKenzie H (1989) Decay distribution in relation to pruning and growth stress in plantation grown Eucalyptus regnans in New Zealand. New Zeal J For Sci 19:210–222Google Scholar
  11. Green DJ, Shortle WC, Shigo AL (1981) Compartmentalization of discolored and decayed wood in red maple branch stubs. For Sci 27:519–522Google Scholar
  12. Hein S (2003) Überwallung, natürliche Astreinigung und Wertästung bei Esche [Fraxinus excelsior L.] und Bergahorn [Acer pseudoplatanus L.]. Tagungsband der Jahrestagung der Sektion Ertragskunde im Deutschen Verband Forstlicher Versuchs- und Forschungsanstalten, Torgau, 304–316Google Scholar
  13. Hein S, Spiecker H (2007) Comparative analysis of occluded branch characteristics for Fraxinus excelsior and Acer pseudoplatanus with natural and artificial pruning. Can J For Res 37:1414–1426CrossRefGoogle Scholar
  14. Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or defend. Q Rev Biol 67:283–335CrossRefGoogle Scholar
  15. Kerr G, Morgan G (2006) Does formative pruning improve the form of broadleaved trees? Can J For Res 36:132–141CrossRefGoogle Scholar
  16. Kleinschmitt J, Spellmann H, Rumpf H, Guericke M, Wachter H (2000) Entscheidungshilfen zur Bewirtschaftung der Vogelkirsche in Nordwestdeutschland. Forst Holz 55(19):611–616Google Scholar
  17. Knoke T, Seifert T (2008) Integrating selected ecological effects of mixed European beech–Norway spruce stands in bioeconomic modelling. Ecol Model 210:487–498CrossRefGoogle Scholar
  18. Knoke T, Stang S, Remler N, Seifert T (2006) Ranking the importance of quality variables for the price of high quality beech timber (Fagus sylvatica L.). Ann For Sci 63:399–413CrossRefGoogle Scholar
  19. Lindgren O (1991) Medical CAT-scanning: X-ray absorption coefficients, CT-numbers and their relation to wood density. Wood Sci Technol 25:341–349Google Scholar
  20. Maguire DA, Hann DW (1987) A stem dissection technique for dating branch mortality and reconstructing past crown recession. For Sci 33(4):858–871Google Scholar
  21. Mahler G (1988) Erfahrungen bei der Verwertung des Kirschenholzes in Süddeutschland. AFZ 20:559–561Google Scholar
  22. Mattheck C (1992) Design in der Natur—Der Baum als Lehrmeister. Rombach, Freiburg, pp 242Google Scholar
  23. Matyssek R, Schnyder H, Elstner E-F, Munch J-C, Pretzsch H, Sandermann H (2002) Growth and parasite defense in plants: the balance between resource sequestration and retention: in lieu of a guest editorial. Plant Biol 4(2):133–136CrossRefGoogle Scholar
  24. Mayer-Wegelin (1936) Ästung. Schaper, Hannover, pp 178Google Scholar
  25. Mayer-Wegelin H (1937) Das Aufästen der Waldbäume. Shaper, Hannover, pp 58Google Scholar
  26. Metzger C (1894) Studien über den Aufbau der Waldbäume und Bestände nach statischen Gesetzen. Die stereometrische Form des Fichtenschaftes. Mündener Forstliche Hefte 6:94–119Google Scholar
  27. Metzler B (1997) Infektionsrisiko und Überwallungszeit bei grüngeästeten Fichten. Allgemeine Forst Zeitschrift/Der Wald 3:49–151Google Scholar
  28. Montagu KD, Kearny DE, Smith RGB (2003) The biology and silviculture of pruning planted eucalypts for clear wood production—a review. For Ecol Manag 179:1–13CrossRefGoogle Scholar
  29. Moss AE (1937) Pruning second growth hardwoods in Connecticut. J For 35:823–828Google Scholar
  30. Nikolova P, Blaschke H, Matyssek R, Pretzsch H, Seifert T (2009) Combined application of computer tomography and light microscopy for analysis of conductive xylem area of beech and spruce coarse roots. Eur J For Res 128(2):145–153Google Scholar
  31. O’Hara (2007) Pruning wounds and occlusion: a long-standing conundrum in forestry. J For (4/5):131–138Google Scholar
  32. Otto H-J (1988) Anbau der Vogelkirsche in Niedersachsen. AFZ 43:542–543Google Scholar
  33. Petruncio M, Briggs D, Barbour J (1997) Predicting pruned branch stub occlusion in young, coastal Douglas-fir. Can J For Res 27:1074–1082CrossRefGoogle Scholar
  34. Petutschnigg AJ, Flach M, Katz H (2002) Rotfäuleerkennung bei Fichte in CT-Bildern. Holz Roh Werkstoff 60(2):219–223CrossRefGoogle Scholar
  35. Pretzsch H (2002) Grundlagen der Waldwachstumsforschung. Blackwell Wissenschafts-Verlag, Berlin, pp 414Google Scholar
  36. Pretzsch H (2006) Species-specific allometric scaling under self-thinning. Evidence from long-tern plots in forest stands. Oecologia 146:572–583CrossRefPubMedGoogle Scholar
  37. Roth ER (1948) Healing and defects following oak pruning. J For 46:500–504Google Scholar
  38. Sarigul E, Abbott AL, Schmoldt DL (2000) Rule-driven defect detection in CT images of hardwood logs. In: Proceedings of the 4th international conference on image processing and scanning of wood. 21-23 August, Mountain Lake, Virginia USA, pp 37–49Google Scholar
  39. Schmalz J (2000) Zur Standortwahl und Ästigkeit der Vogelkirsche. Forst und Holz 55(5):131–135Google Scholar
  40. Seifert T (2003) Integration von Holzqualität und Holzsortierung in behandlungssensitive Waldwachstumsmodelle- Integration of wood quality, bucking and sorting in growth models sensitive to silvicultural treatment. PhD thesis at the Chair for Forest Growth and Yield Science, Technische Universität München, pp 314Google Scholar
  41. Seifert E (2005) Automatische Jahrringerkennung in CT-Aufnahmen von Baumstämmen. Diploma thesis at the Chair for Forest Growth and Yield Science, Technische Universität München in cooperation with the University of Applied Sciences, Augsburg, pp 122Google Scholar
  42. Seifert T (2007) Simulating the extent of decay caused by Heterobasidion annosum s. l: In stems of Norway spruce. For Ecol Manag 248:95–106CrossRefGoogle Scholar
  43. Shigo AL (1984a) Compartmentalization: A conceptual framework for understanding how trees grow and defend themselves. Ann. Rev. Phytopathol. 22:189–214CrossRefGoogle Scholar
  44. Shigo AL (1984b) Tree decay and pruning. Arboricult. l J. 8:1–12Google Scholar
  45. Shigo AL, Marx H (1977) Compartmentalization of decay in trees. USDA Forest Service Agricultural Information Bulletin 405, pp 73Google Scholar
  46. Skilling DD (1958) Wound healing and defects following northern hardwood pruning. J For 56:19–22Google Scholar
  47. Spiecker M (1994) Wachstum und Erziehung wertvoller Waldkirschen. Mitteilungen der FVA Baden-Württemberg 181:92Google Scholar
  48. Spiecker M, Spiecker H (1988) Erziehung von Kirschenwertholz. AFZ 43:562–565Google Scholar
  49. Struck G, Dohrenbusch A (2000) Development of a new branchiness index ASIX–A simple tool to describe branchiness in young deciduous forest stands. Ann For Sci 57:811–818CrossRefGoogle Scholar
  50. Utschig H, Jurschitzka P (1993) Das Wachstum der Vogelkirsche in Unterfranken. AFZ 48:288–291Google Scholar
  51. Warton DI, Wright IJ, Falster DS, Westopby M (2006) Bivariate line-fitting methods for allometry. Biol Rev 81:259–291CrossRefPubMedGoogle Scholar
  52. Zimmerle H (1943) Über Astungsversuche bei der Rotbuche. Allg Forst Jagdztg 119:88–104Google Scholar
  53. Zimmermann H (1988) Zur Bedeutung und Bewirtschaftung der Wildkirsche. AFZ 43:538–540Google Scholar
  54. Žumer M (1966) Astungsversuche an Föhre, Fichte, Birke, Aspe, Esche und Eiche. Kvistingsforsøk med fur, gran, bjørk, osp, ask, og eik. Meddelelser fra det Norske Skogsforsøgsvesen, 20 (77):399–581Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of Forest and Wood ScienceStellenbosch UniversityMatielandSouth Africa
  2. 2.Chair of Forest Growth and Yield ScienceTechnische Universität MünchenFreisingGermany

Personalised recommendations