Skip to main content
Log in

Arginase, glutamine synthetase and glutamate dehydrogenase activities in moist chilled and warm-incubated walnut kernels

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

The activities of arginase, glutamine synthetase (GS) and glutamate dehydrogenase (GDH) were studied in both moist chilled (5°C) and warm (27°C) incubated walnut (Juglans regia. L) kernels to asses whether the non-germinability of dormant kernels is associated with failure in amino acid metabolism. Warm-incubated kernels showed low germination (25%), whereas cold-stratified kernels displayed germination up to 61%. Arginase activity increased about twofold in imbibed kernels. It remained at a high level in cold-stratified kernels from mid-period of incubation onwards; however, in warm-incubated kernels the activity declined after an initial increase so that by 20 days, it was negligible. No significant differences in GS activity occurred between cold-stratified and warm-incubated kernels, but the activity of GDH was significantly more in kernels incubated at warm conditions. Thin-layer chromatographic separation of polyamines revealed greater ammonia, spermidine and an unknown polyamine accumulation in warm-incubated kernels. Thus, the declined rate of walnut kernel germination under warm conditions is mainly correlated with rapid inactivation of arginase, greater levels of ammonia and alterations in kernel polyamine composition. The enhanced activity of GDH in warm-incubated kernels implies that catabolic deamination of amino acids and their subsequent respiration is the favored pathway ongoing under warm conditions. This situation compromises germination-specific metabolism of amino acids which likely to operate better at lower temperatures during cold stratification of kernels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

GDH:

Glutamate dehydrogenase

GS:

Glutamine synthetase

PMSF:

Phenylmethylsulfonyl fluoride

EDTA:

Ethylene diamine tetraacetic acid

PVPP:

Polyvinylpolypyrrolidone

References

  • Andriotis VME, Smith B, Ross JD (2004) Phytic acid mobilization is an early response to chilling of the embryonic axes from dormant oil seed of hazel (Corylus avellana L.). J Exp Bot 56:537–545

    Article  PubMed  Google Scholar 

  • Aubert S, Bligny R, Douce R, Ratcliffe RG, Roberts JKM (2001) Contribution of glutamate dehydrogenase to mitochondrial metabolism studied by 13C and 31P nuclear magnetic resonance. J Exp Bot 52:37–45

    Article  CAS  PubMed  Google Scholar 

  • Brugiere N, Dubois F, Masclaux C, Sangwan RS, Hirel B (2000) Immunolocalization of glutamine synthetase in senescing tobacco (Nicotiana tabacum L.) leaves suggests that ammonia assimilation is progressively shifted to the mesophyll cytosol. Planta 211:519–527

    Article  CAS  PubMed  Google Scholar 

  • Canovas FM, Avila C, Canton R, Canas RA, Torre FDL (2007) Ammonium assimilation and amino acid metabolism in conifers. J Exp Bot 58:2307–2318

    Article  CAS  PubMed  Google Scholar 

  • Cantón FR, Suarez MF, Canovas FM (2005) Molecular aspects of nitrogen mobilization and re-cycling in trees. Photosynth Res 83:265–278

    Article  PubMed  Google Scholar 

  • Capdevila AM, Dure L (1977) Developmental biochemistry of cotton seed embryogenesis and germination. VIII. Free amino acid pool composition during cotyledon development. Plant Physiol 59:268–273

    Article  CAS  PubMed  Google Scholar 

  • Chibani K, Ali-Rachedi S, Job C, Job D, Jullien M, Grappin PH (2006) Proteomic analysis of seed dormancy in Arabidopsis. Plant Physiol 142:1493–1510

    Article  CAS  PubMed  Google Scholar 

  • Chinard FP (1952) Photometric estimation of proline and ornithine. J Biol Chem 199:91–95

    CAS  PubMed  Google Scholar 

  • Crozier A, Kamiya Y, Bishop G, Yokota T (2000) Biosynthesis of hormones and elicitor molecules. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Biologists, Inc, Rockville, pp 911–915

    Google Scholar 

  • Dawidowicz–Grzegorzewska A (1989) Degradation of protein and lipid bodies during dormancy removal in apple seeds. J Plant Physiol 135:43–51

    Google Scholar 

  • Derkx MPM (2000) Pre-treatment at controlled seed moisture content as an effective means to break dormancy in tree seeds. In: Viemont JD, Crabbe J (eds) Dormancy in plants. CAB International, Wallingford, pp 69–78

    Chapter  Google Scholar 

  • Desmaison AM, Tixier M (1986) Amino acids content in germinating seeds and seedlings from Castanea sativa L. Plant Physiol 81:692–695

    Article  CAS  PubMed  Google Scholar 

  • Dufeu M, Martin-Tanguy J, Hennion F (2003) Temperature-dependent changes of amine levels during early seedling development of the cold-adapted subantarctic crucifer Pringlea antiscorbutica. Physiol Plant 118:164–172

    Article  CAS  Google Scholar 

  • Einali AR, Sadeghipour HR (2007) The alleviation of dormancy in walnut kernels by moist chilling is independent from storage protein mobilization. Tree Physiol 27:519–525

    CAS  PubMed  Google Scholar 

  • Flores H, Galston AW (1982) Analysis of polyamines in higher plants by high performance liquid chromatography. Plant Physiol 69:701–706

    Article  CAS  PubMed  Google Scholar 

  • Forward BS, Tranbarger TJ, Misra S (2001) Characterization of proteinase activity in stratified Douglas-fir seeds. Tree Physiol 21:625–629

    CAS  PubMed  Google Scholar 

  • Gallardo F, Fu J, Jing ZP, Kirby EG, Canovas FM (2003) Genetic modification of amino acid metabolism in woody plants. Plant Physiol Biochem 41:587–594

    Article  CAS  Google Scholar 

  • Glevarec G, Bouton S, Jaspard E, Riou M-T, Cliquet J-B, Suzuki A, Limami AM (2004) Respective roles of the glutamine synthetase/glutamate synthase cycle and glutamate dehydrogenase in ammonium and amino acid metabolism during germination and post-germinative growth in the model legume Medicago truncatula. Planta 219:286–297

    Article  CAS  PubMed  Google Scholar 

  • Goldraij A, Polacco JC (1999) Arginase is inoperative in developing soybean embryos. Plant Physiol 119:297–303

    Article  CAS  PubMed  Google Scholar 

  • Goldraij A, Polacco JC (2000) Arginine degradation by arginase in mitochondria of soybean seedling cotyledons. Planta 210:652–658

    Article  CAS  PubMed  Google Scholar 

  • Greenberg DM (1955) Enzymes of protein metabolism. Methods Enzymol 2:368–374

    Article  CAS  Google Scholar 

  • Guoyao WU, Morris SM (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336:1–17

    Google Scholar 

  • Hodges M, Flesch V, Galvez S, Bismuth E (2003) Higher plant NADP+-dependent isocitrate dehydrogenase, ammonium assimilation and NADPH production. Plant Physiol Biochem 41:577–585

    Article  CAS  Google Scholar 

  • Ishiyama K, Inoue E, Watanabe-Takahashi A, Obara M, Yamaya T, Takahashi H (2004) Kinetic properties and ammonium-dependent regulation of cytosolic isoenzymes of glutamine synthetase in Arabidopsis. J Biol Chem 279:16598–16605

    Article  CAS  PubMed  Google Scholar 

  • Kaur R, Sharma N, Kumar K, Sharma DR, Sharma SD (2006) In vitro germination of Walnut (Juglans regia L.) embryos. Sci Hortic 109:385–388

    Article  CAS  Google Scholar 

  • Kichey T, Gouis JL, Sangwan B, Hirel B, Dubois F (2005) Changes in the cellular and subcellular localization of glutamine synthetase and glutamate dehydrogenase during flag leaf senescence in Wheat (Triticum aestivum L.). Plant Cell Physiol 46:964–974

    Article  CAS  PubMed  Google Scholar 

  • King JE, Gifford DJ (1997) Amino acid utilization in seeds of loblolly pine during germination and early seedling growth. Plant Physiol 113:1125–1135

    CAS  PubMed  Google Scholar 

  • Kusano T, Berberich T, Tateda C, Takahashi Y (2008) Polyamines: essential factors for growth and survival. Planta 228:367–381

    Article  CAS  PubMed  Google Scholar 

  • Lapa-Guimaraes J, Pickova J (2004) New solvent systems for thin-layer chromatographic determination of nine biogenic amines in fish and squid. J Chromatogr A 1045:223–232

    Article  CAS  PubMed  Google Scholar 

  • Lewak S, Rychter A, Zarska-Meciejewska B (2000) Sugar metabolism embryos. In: Viemont JD, Crabbe J (eds) Dormancy in plants. CAB International, Wallingford, pp 47–55

    Google Scholar 

  • Li L, Ross JD (1990) Lipid mobilization during dormancy breakage in oilseed of Corylus avellana. Ann Bot 66:501–505

    CAS  Google Scholar 

  • Limami AM, Rouillon C, Glevarec G, Gallais A, Hirel B (2002) Genetic and physiological analysis of germination efficiency in maize in relation to nitrogen metabolism reveals the importance of cytosolic glutamine synthetase. Plant Physiol 130:1860–1870

    Article  CAS  PubMed  Google Scholar 

  • Mapelli S, Brambilla I, Bertani A (2001) Free amino acids in walnut kernels and young seedlings. Tree Physiol 21:1299–1302

    CAS  PubMed  Google Scholar 

  • Masclaux-Daubresse C, Carrayol E, Valadier M-H (2005) The two nitrogen mobilization- and senescence-associated GS1 and GDH genes are controlled by C and N metabolites. Planta 221:580–588

    Article  CAS  PubMed  Google Scholar 

  • Miflin BJ, Habash DZ (2002) The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops. J Exp Bot 53:979–987

    Article  CAS  PubMed  Google Scholar 

  • Miyashita Y, Good AG (2008) NAD(H)-dependent glutamate dehydrogenase is essential for the survival of arabidopsis thaliana during dark-induced carbon starvation. J Exp Bot 59:667–680

    Article  CAS  PubMed  Google Scholar 

  • Montanini B, Betti M, Márquez AJ, Balestrini R, Bonfante P, Ottonello S (2003) Distinctive properties and expression profiles of glutamine synthetase from a plant symbiotic fungus. Biochem J 15:357–368

    Article  Google Scholar 

  • Nezamdoost T, Tamaskani F, Abdolzadeh A, Sadeghipour HR (2009) Lipid mobilization, gluconeogenesis and aging related processes in walnut (Juglans regia L.) kernels during moist chilling and warm incubation. Seed Sci Res 19:91–101

    Article  CAS  Google Scholar 

  • Oliveira IC, Brears T, Knight TJ, Clark A, Coruzzi GM (2002) Overexpression of cytosolic glutamine synthetase in relation to nitrogen, light and photorespiration. Plant Physiol 129:1170–1180

    Article  CAS  PubMed  Google Scholar 

  • Pageau K, Reisdorf-Cren M, Morot-Gaudry J-F, Masclaux-Daubresse C (2006) The two senescence-related markers, gs1 (cytosolic glutamine synthetase and gdh (glutamate dehydrogenase), involved in nitrogen mobilization, are differentially regulated during pathogen attack and by stress hormones and reactive oxygen species in Nicotiana tabacum L. leaves. J Exp Bot 57:547–557

    Article  CAS  PubMed  Google Scholar 

  • Purnell MP, Botella JR (2006) Tobacco isoenzyme 1 of NAD(H)- glutamate dehydrogenase catabolizes glutamate in vivo. Plant Physiol 143:530–539

    Article  PubMed  Google Scholar 

  • Rajjou L, Gallardo K, Debeaujon I, Vandekerckhove J, Job C, Job D (2004) The effect of α-amanitin on the Arabidopsis seed proteome highlights the distinct roles of stored and neosynthesized mRNA during germination. Plant Physiol 134:1598–1613

    Article  CAS  PubMed  Google Scholar 

  • Rana NK, Mohanpuria P, Yadav SK (2008) Cloning and characterization of a cytosolic glutamine synthetase from Camellia sinensis (L.) O. Kuntze that is upregulated by ABA, SA, and H2O2. Mol Biotechnol 39:49–56

    Article  CAS  PubMed  Google Scholar 

  • Restivo FM (2004) Molecular cloning of glutamate dehydrogenase genes of Nicotiana plumbaginifolia: structure analysis and regulation of their expression by physiological and stress conditions. Plant Sci 166:971–982

    Article  CAS  Google Scholar 

  • Ross JD (1984) Metabolic aspects of dormancy. In: Murray DR (ed) Seed physiology, vol. 2: germination and reserve mobilization. Academic press, New York, pp 45–75

    Google Scholar 

  • Roubelakis KA, Kliewer WM (1978) Enzymes of Krebs–Henseleit in Vitis vinifera L. Plant Physiol 62:344–347

    Article  CAS  PubMed  Google Scholar 

  • San B, Dumanoglu H (2007) Effect of desiccation, cold storage, and gibberellic acid on germination of somatic embryos in walnut (Juglans regia). NZ J Crop Hort Sci 35:73–78

    Google Scholar 

  • Santanen A, Simola LK (1999) Metabolism of L [U-14C]-arginine and L [U-14C]-ornithine in maturing and vernalised embryos and megagametophyte of Picea abies. Physiol Plant 107:433–440

    Article  CAS  Google Scholar 

  • Santanen A, Simola LK (2007) Polyamine levels in buds and twigs of Tilia cordata from dormancy onset to bud break. Trees 21:337–344

    Article  CAS  Google Scholar 

  • Sinska I, Lewandowska U (1991) Polyamines and ethylene in the removal of embryonal dormancy in apple seeds. Physiol Plant 81:59–64

    Article  CAS  Google Scholar 

  • Skopelitis DS, Paranychianakis NV, Paschalidis KA, Pliakonis ED, Delis ID, Yakoumakis DI, Kouvarakis A, Papadakis AK, Stephanou EG, Roubelakis-Angelakis KA (2006) Abiotic stress generates ROS that signal expression of anionic glutamate dehydrogenases to form glutamate for proline synthesis in tobacco and grapevine. Plant Cell 18:2767–2781

    Article  CAS  PubMed  Google Scholar 

  • Skopelitis DS, Paranychianakis NV, Kouvarakis A, Spyros A, Stephanou EG, Roubelakis-Angelkis KA (2007) The isoenzyme 7 of tobacco NAD(H)-dependent glutamate dehydrogenase exhibits high deaminating and low aminating activities in vivo. Plant Physiol 145:1726–1734

    Article  CAS  PubMed  Google Scholar 

  • Splittstoesser WE (1969) Metabolism of arginine by aging and 7 d old pumpkin seedlings. Plant Physiol 44:361–366

    Article  CAS  PubMed  Google Scholar 

  • Stewart GR, Shatilov VR, Turnbull MH, Robinson SA, Goodall R (1995) Evidence that glutamate dehydrogenase plays a role in the oxidative deamination of glutamate in seedlings of Zea mays. Aust J Plant Physiol 22:805–809

    Article  CAS  Google Scholar 

  • Suarez MF, Avila C, Gallardo F, Canton FR, Garcia-Gutierrez A, Claros MG, Canovas FM (2002) Molecular and enzymatic analysis of ammonium assimilation in woody plants. J Exp Bot 53:891–904

    Article  CAS  PubMed  Google Scholar 

  • Sze-Tao KWC, Sathe SK (2000) Walnuts (Juglans regia L.): proximate composition, protein solubility, protein amino acid composition and protein in vitro digestibility. J Sci Food Agric 80:1393–1401

    Article  CAS  Google Scholar 

  • Tang H, Ren Z, Krczal G (2000) Improvement of English walnut somatic embryo germination and conversion by desiccation treatments and plantlet development by lower medium salts. In Vitro Cell Dev Biol Plant 36:47–50

    Article  CAS  Google Scholar 

  • Teixeira J, Pereira S, Canovas F, Salema R (2005) Glutamine synthetase of potato (Solanum tuberosum L. cv. Desiree) plants: cell-and organ-specific expression and differential developmental regulation reveal specific roles in nitrogen assimilation and mobilization. J Exp Bot 56:663–671

    Article  CAS  PubMed  Google Scholar 

  • Tian J, Bryk R, Itoh M, Suematsu M, Nathan C (2005) Variant tricarboxylic acid cycle in Mycobacterium tuberculosis: identification of α-ketoglutarate decarboxylase. Proc Natl Acad Sci USA 102:10670–10675

    Article  CAS  PubMed  Google Scholar 

  • Urano K, Hobo T, Shinozaki K (2005) Arabidopsis ADC genes involved in polyamine biosynthesis are essential for seed development. FEBS Lett 579:1557–1564

    Article  CAS  PubMed  Google Scholar 

  • Wang BSP, Berjak P (2000) Beneficial effects of moist chilling on the seeds of black spruce (Picea mariana [Mill.] B.S.P.). Ann Bot 86:29–36

    Article  Google Scholar 

  • Zarska-Maciejewska B (1992) Lipolytic activity during dormancy removal in apple seeds. Plant Physiol Biochem 30:65–70

    CAS  Google Scholar 

  • Zarska-Maciejewska B, Lewak S (1983) The role of proteolytic enzymes in the release from dormancy of apple seeds. Z Pflanzenphysiol 110:409–417

    CAS  Google Scholar 

Download references

Acknowledgments

We thank the GUASNR Deputy of Research and Office of Higher Education for financial support to M. Zarei Ghadikolaee in the form of Grants for M.Sc. research projects. Thanks are also due to Dr. Majid Azimmohseni from the Department of Statistics, Golestan University for the statistical consult of the project and Ms. Mahrokh Sharbatkhory from the GUASNR Central Laboratory for her technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Sadeghipour.

Additional information

Communicated by F. Canovas.

Ahmad Abdolzadeh Contribution share of 40% according to the University Promotion Table.

Hamid Reza Sadeghipour Former member of Gorgan University of Agricultural Sciences and Natural Resources.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zarei-Ghadikolaee, M., Abdolzadeh, A. & Sadeghipour, H.R. Arginase, glutamine synthetase and glutamate dehydrogenase activities in moist chilled and warm-incubated walnut kernels. Trees 24, 425–433 (2010). https://doi.org/10.1007/s00468-010-0410-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-010-0410-4

Keywords

Navigation