Skip to main content

Advertisement

Log in

Growth-active gibberellins overcome the very slow shoot growth of Hancornia speciosa, an important fruit tree from the Brazilian “Cerrado”

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Shoot elongation of Hancornia speciosa, an endangered tree from the Brazilian savannah “Cerrado”, is very slow, thus limiting nursery production of plants. Gibberellins (GAs) A1, A3, and A5, and two inhibitors of GA biosynthesis, trinexapac-ethyl and ancymidol were applied to shoots of Hancornia seedlings. GA1 and GA3 significantly stimulated shoot elongation, while GA5 had no significant effect. Trinexapac-ethyl and ancymidol, both at 100 µg per seedling, inhibited shoot elongation up to 45 days after treatment, though the effect was statistically significant only for ancymidol. Somewhat surprisingly, exogenous GA3 more effectively stimulated shoot elongation in SD-grown plants, than in LD-grown plants. The results from exogenous application of GAs and inhibitors of GA biosynthesis imply that Hancornia shoot growth is controlled by GAs, and that level of endogenous growth-active GAs is likely to be the limiting factor for shoot elongation in Hancornia. Application of GAs thus offer a practical method for nursery production of Hancornia seedlings for outplanting into the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Adams R, Kerber E, Pfister K, Weiler EW (1992) Studies on the action of the new growth retardant CGA 163935 (Cimectacarb). In: Karssen CM, van Loon LC, Vreugdenhil D (eds) Progress in plant growth regulation. Kluwer, Dordrecht, pp 818–827

    Google Scholar 

  • Correa MP (1978) Dicionario das plantas uteis do Brasil e das exóticas cultivadas, vol 5. Ministerio da Agricultura, Rio de Janeiro

    Google Scholar 

  • Da Silva JMC, Bates JM (2002) Biogeographic patterns and conservation in the South American Cerrado: a tropical savanna hotspot. BioScience 52:225–233

    Article  Google Scholar 

  • Dahanayake SR, Galwey NW (1999) Effects of interactions between low-temperature treatments, gibberellin (GA3) and photoperiod on flowering and stem height of spring rape (Brassica napus var. annua). Ann Bot 84:321–327

    Article  CAS  Google Scholar 

  • Durley RC, Railton ID, Pharis RP (1973) Interconversion of gibberellin A5 to gibberellin A3 in seedlings of dwarf Pisum sativum. Phytochemistry 12:1609–1612

    Article  CAS  Google Scholar 

  • Eriksson ME, Israelsson M, Olsson O, Moritz T (2000) Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass and xylem fiber length. Nat Biotechnol 18:784–788

    Article  CAS  PubMed  Google Scholar 

  • Franco AC (2002) Ecophysiology of woody plants. In: Oliveira OS, Marquis RJ (eds) The Cerrados of Brazil: ecology and natural history of a Neotropical savanna. Columbia University Press, New York, pp 178–197

    Google Scholar 

  • Fujioka S, Yamane H, Spray CR, Phinney BO, Gaskin P, Macmillan J, Takahashi N (1990) Gibberellin A3 is biosynthesized from gibberellin A20 via gibberellin A5 in shoots of Zea mays L. Plant Physiol 94:127–131

    Article  CAS  PubMed  Google Scholar 

  • Griggs DL, Hedden P, Temple-Smith KE, Rademacher W (1991) Inhibition of gibberellin 2β-hydroxylases by acylcyclohexanedione derivatives. Phytochem 30:2513–2517

    Article  CAS  Google Scholar 

  • Hedden P, Croker SJ (1992) Regulation of gibberellin biosynthesis in maize seedlings. In: Karssen CM, van Loon LC, Vreugdenhil D (eds) Progress in plant growth regulation. Kluwer, Dordrecht, pp 534–544

    Google Scholar 

  • Hisamatsu T, Koshioka M, Kubota S, King RW, Mander LN (2000a) Flower promotion of Matthiola incana (L.) R. Br. by gibberellin biosynthesis inhibitory acylcyclohexanediones. Acta Hort 515:33–38

    CAS  Google Scholar 

  • Hisamatsu T, Koshioka M, Kubota S, Fujime Y, King RW, Mander LN (2000b) The role of gibberellin biosynthesis in the control of growth and flowering in Matthiola incana. Physiol Plant 109:97–105

    Article  CAS  Google Scholar 

  • Hoffmann WA (2000) Post-establishment seedling success in the Brazilian Cerrado: a comparison of savanna and forest species. Biotropica 32:62–69

    Google Scholar 

  • Jones RL (1973) Gibberellins: their physiological role. Ann Rev Plant Physiol 24:571–598

    Article  CAS  Google Scholar 

  • Kende H, Zeevaart JAD (1997) The five ‘‘classical’’ plant hormones. Plant Cell 9:1197–1210

    Article  CAS  PubMed  Google Scholar 

  • Klink CA, Machado RB (2005) Conservation of the Brazilian Cerrado. Conserv Biol 19:707–713

    Article  Google Scholar 

  • Mendonça R, Felfili JM, Walter BM, Silva MC, Rezende AV, Filgueiras TS, Nogueira PEN (1998) Flora vascular do Cerrado. In: Sano SM, Almeida SP (eds) Cerrado: ambiente e flora. EMBRAPA-CPAC, Planaltina, p 556

    Google Scholar 

  • Moritz T, Monteiro AM (1994) Analysis of endogenous gibberellins and gibberellin metabolites from Dalbergia dolichopetala by gas chromatography–mass spectrometry and high-performance liquid chromatography–mass spectrometry. Planta 193:1–8

    Article  Google Scholar 

  • Moura NF, Chaves LJ, Vencovsky R, Zucchi MI, Pinheiro JB, De Morais LK, Moura MF (2005) Selection of RAPD markers to study genetic structure of Hancornia speciosa Gomez. Biosci J 21:119–125

    Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Nakayama I, Miyazawa T, Kobayashi M, Kamiya Y, Abe H, Sakurai A (1991) Studies on the action of the plant growth regulators BX-112, DOCHC, and DOCHC-Et. In: Takahashi N, Phinney BO, MacMillan J (eds) Gibberellins. Springer, New York, pp 311–319

    Google Scholar 

  • Parente TV, Borgo LA, Machado JWB (1985) Características fisico-quimicas de frutos de mangaba (Hancornia speciosa Gom.) do cerrado da regiao geoeconomica do Distrito Federal. Cien Cult 37:95–98

    Google Scholar 

  • Poole AT, Ross JJ, Lawrence NL, Reid JB (1995) Identification of gibberellin A4 in Pisum sativum L. and the effects of applied gibberellins A9, A4, A5 and A3 on the le mutant. Plant Growth Regul 16:257–262

    Article  CAS  Google Scholar 

  • Rademacher W (2000) Growth retardants: effects on gibberellin biosynthesis and other metabolic pathways. Ann Rev Plant Physiol Plant Mol Biol 51:501–531

    Article  CAS  Google Scholar 

  • Silva JF, Farinas MR, Felfili JM, Klink CA (2006) Spatial heterogeneity, land use and conservation in the Cerrado region of Brazil. J Biogeogr 33:536–548

    Article  Google Scholar 

  • Tan ZG, Qian YL (2003) Light intensity affects gibberellic acid content in Kentucky bluegrass. HortScience 38:113–116

    CAS  Google Scholar 

  • Wolbang CM, Chandler PM, Smith JJ, Ross JJ (2004) Auxin from the developing inflorescence is required for the biosynthesis of active gibberellins in barley stems. Plant Physiol 134:769–776

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi S (2008) Gibberellin metabolism and its regulation. Ann Rev Plant Biol 59:225–251

    Article  CAS  Google Scholar 

  • Zeevaart JAD, Gage DA, Talon M (1993) Gibberellin A1 is required for stem elongation in spinach. PNAS, USA 90:7401–7405

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Conselho Nacional de Pesquisa e Desenvolvimento-Brazil/PRONEX “Ecofisiologia de Plantas Nativas do Cerrado” for providing financial support and nurseries of the Forestry Department and of Fazenda Água Limpa (University of Brasilia) for providing technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adaucto Bellarmino Pereira-Netto.

Additional information

Communicated by O. Junttila.

L. S. Caldas: in memorium.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caldas, L.S., de Lima Machado, L., Caldas, S.C. et al. Growth-active gibberellins overcome the very slow shoot growth of Hancornia speciosa, an important fruit tree from the Brazilian “Cerrado”. Trees 23, 1229–1235 (2009). https://doi.org/10.1007/s00468-009-0361-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-009-0361-9

Keywords