Skip to main content
Log in

Evidence for the signaling role of methyl jasmonate, methyl salicylate and benzothiazole between poplar (Populus simonii × P. pyramidalis ‘Opera 8277’) cuttings

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Interplant communication has been widely demonstrated in plants, especially in herbaceous plants. In this study, mechanical damage was shown to affect the levels of pyrochatechol, chlorogenic acid, gallic acid and p-hydroxyl benzoic acid in poplar (Populus simonii × P. pyramidalis ‘Opera 8277’) cuttings, indicating the activation of defense response. In neighboring intact cuttings, the levels of those phenolics also varied when compared to the control, suggesting the interplant communication between poplar cuttings. Three volatiles, methyl jasmonate, methyl salicylate and benzothiazole, were detected in volatiles emitted from mechanically damaged poplar cuttings. All of them can induce changes in the levels of four phenolics. Therefore, they could act as airborne signals between P. simonii × P. pyramidalis ‘Opera 8277’ cuttings. The different change patterns of phenolic contents induced by different volatiles imply that the defense response activated in neighboring plants may be regulated by multiple signaling pathways. The results also suggest that the entire defense response of plants involves a variety of airborne signals in wound-induced volatiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Arimura G, Ozawa R, Shimoda T, Nishioka T, Boland W, Takabayashi J (2000) Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature 406:512–515. doi:10.1038/35020072

    Article  PubMed  CAS  Google Scholar 

  • Arimura G, Ozawa R, Horiuchi J, Nishioka T, Takabayashi J (2001) Plant-plant interactions mediated by volatiles emitted from plants infested by spider mites. Biochem Syst Ecol 29:1049–1061. doi:10.1016/S0305-1978(01)00049-7

    Article  CAS  Google Scholar 

  • Bajaj KL (1988) Biochemical basis for disease resistance-role of plant phenolics. In: Singh R, Sawhney SK (eds) Advances in frontier areas of plant biochemistry. Prentice-Hall, New Delhi, pp 487–510

    Google Scholar 

  • Baldwin IT, Schultz JC (1983) Rapid changes in tree leaf chemistry induced by damage: evidence for communication between plants. Science 221:277–279. doi:10.1126/science.221.4607.277

    Article  PubMed  CAS  Google Scholar 

  • Bruin J, Dicke M, Sabelis M (1992) Plants are better protected against spider-mites after exposure to volatiles from infested conspecifics. Experimentia 48:525–529. doi:10.1007/BF01928181

    Article  CAS  Google Scholar 

  • Chang G, Kwok SF, Bleecker AB, Meyerowitz EM (1993) Arabidopsis ethylene-response gene Etr1: similarity of product to two-component regulators. Science 162:539–544. doi:10.1126/science.8211181

    Article  Google Scholar 

  • Chiron H, Drouet A, Lieutier F, Payer HD, Ernst D, Sandermann HJ (2000) Gene induction of stilbene biosynthesis in scots pine in response to ozone treatment, wounding, and fungal infection. Plant Physiol 124:865–872. doi:10.1104/pp.124.2.865

    Article  PubMed  CAS  Google Scholar 

  • Creelman RA, Mullet JE (1997) Biosynthesis and action of jasmonate in plants. Annu Rev Plant Physiol Plant Mol Biol 48:355–381. doi:10.1146/annurev.arplant.48.1.355

    Article  PubMed  CAS  Google Scholar 

  • Dey PM, Harborne JB (1997) Plant biochemistry. Academic Press, London

    Google Scholar 

  • Dicke M, van Beek TA, Posthumus MA, Ben Dom N, van Bokhoven H, de Groot AE (1990) Isolation and identification of volatile kairomone that affects acarine predator-prey interactions. Involvement of host plants in its production. J Chem Ecol 16:381–396. doi:10.1007/BF01021772

    Article  CAS  Google Scholar 

  • Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097

    Article  PubMed  CAS  Google Scholar 

  • Engelberth J, Alborn HT, Schmelz EA, Tumlinson JH (2003) Airborne signals prime plants against insect herbivore attack. Proc Natl Acad Sci USA 101:1781–1785. doi:10.1073/pnas.0308037100

    Article  Google Scholar 

  • Farmer EE, Ryan CA (1990) Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci USA 87:7713–7716. doi:10.1073/pnas.87.19.7713

    Article  PubMed  CAS  Google Scholar 

  • Gatehouse JA (2002) Plant resistance towards insect herbivores: a dynamic interaction. New Phytol 156:145–169. doi:10.1046/j.1469-8137.2002.00519.x

    Article  CAS  Google Scholar 

  • Görlach J, Volrath S, Knauf-Beiter G, Hengy G, Beckhove U, Kogel K, Oostendorp M, Staub T, Ward E, Kessmann H, Ryals J (1996) Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. Plant Cell 8:629–643

    Article  PubMed  Google Scholar 

  • Higuchi T (1997) Biochemistry and molecular biology of wood. Springer, Berlin

    Google Scholar 

  • Hu ZH, Zhao L, Yang D, Shen YB, Shen FY (2006) Influences of the Populus deltoids seedlings treated with exogenous methyl jasmonate on the growth and development of Lymantria dispar larvae. J For Res 17:277–280. doi:10.1007/s11676-006-0063-8

    Article  CAS  Google Scholar 

  • Hua J, Meyerowitz EM (1998) Ethylene responses are negatively regulated by receptor gene family in Arabidopsis thaliana. Cell 94:261–282. doi:10.1016/S0092-8674(00)81425-7

    Article  PubMed  CAS  Google Scholar 

  • Hua J, Cahng C, Sun Q, Meyerowitz EM (1995) Ethylene insensitivity conferred by Arabidopsis ERS gene. Science 269:1712–1714. doi:10.1126/science.7569898

    Article  PubMed  CAS  Google Scholar 

  • Karban R, Baldwin IT (1997) Induced responses to herbivory. University of Chicago Press, Chicago

    Google Scholar 

  • Karban R, Baldwin IT, Baxter KJ, Laue G, Felton GW (2000) Communication between plants: induced resistance in wild tobacco plants following clipping of neighboring sagebrush. Oecologia 125:66–71. doi:10.1007/PL00008892

    Article  Google Scholar 

  • Karban R, Maron J, Felton GW, Ervin G, Eichenseer H (2003) Herbivore damage to sagebrush induces resistance in wild tobacco: evidence for eavesdropping between plants. Oikos 100:325–332. doi:10.1034/j.1600-0706.2003.12075.x

    Article  Google Scholar 

  • Katz VA, Thulke OU, Conrath U (1998) A benzothiadiazole primes parsley cells fro augmented elicition of defense responses. Plant Physiol 117:1333–1339. doi:10.1104/pp.117.4.1333

    Article  PubMed  CAS  Google Scholar 

  • Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144. doi:10.1126/science.291.5511.2141

    Article  PubMed  CAS  Google Scholar 

  • Kessler A, Baldwin IT (2002) Plant responses to insect herbivory: the emerging molecular analysis. Annu Rev Plant Biol 53:299–328. doi:10.1146/annurev.arplant.53.100301.135207

    Article  PubMed  CAS  Google Scholar 

  • Kishimoto K, Matsui K, Ozawa R, Takabayashi J (2005) Volatile C6-aldehydes and allo-ocimene activate defense genes and induce resistance against Botrytis cinerea in Arabidopsis thaliana. Plant Cell Physiol 46:1093–1102. doi:10.1093/pcp/pci122

    Article  PubMed  CAS  Google Scholar 

  • Korth KL, Dixon RA (1997) Evidence for chewing insect-specific molecular events distinct from a general wound response in leaves. Plant Physiol 115:1299–1305

    PubMed  CAS  Google Scholar 

  • Lambers H, Chapin FS, Pons TL (1998) Plant physiological ecology. Springer, New York

    Google Scholar 

  • Lawton MA, Lamb CJ (1987) Transcriptional activation of plant defense gene by fungal elicitor, wounding and infection. Mol Cell Biol 7:335–341

    PubMed  CAS  Google Scholar 

  • Mattiacci L, Rocca BA, Scascighini N, D’alessandro M, Hern A, Dorn S (2001) Systemically induced plant volatiles emitted at the time of “danger”. J Chem Ecol 27:2233–2252. doi:10.1023/A:1012278804105

    Article  PubMed  CAS  Google Scholar 

  • Mithöfer A, Wanner G, Boland W (2005) Effects of feeding Spodoptera littoralis on lima Bean leaves. II. continuous mechanical wounding resembling insect feeding is sufficient to elicit herbivory-related volatile emission. Plant Physiol 137:1160–1168. doi:10.1104/pp.104.054460

    Article  PubMed  Google Scholar 

  • Partington JC, Smith C, Bolwell GP (1999) Changes in the location of polyphenol oxidase in potato (Solamum tuberosum) tuber during cell death in response to impact injury: comparison with wound tissue. Planta 207:449–460. doi:10.1007/s004250050504

    Article  PubMed  CAS  Google Scholar 

  • Ping LY, Shen YB, Jin YJ (2001a) Volatiles released in succession from artificially damaged ashleaf maple leaves. Funct Plant Biol 28:513–517. doi:10.1071/PP00123

    Article  CAS  Google Scholar 

  • Ping LY, Shen YB, Jin YJ, Hao JH (2001b) Leaf volatiles induced by mechanical damage from diverse taxonomic tree species. J Integr Plant Biol 43:261–266

    CAS  Google Scholar 

  • Rakwal R, Komatsu S (2000) Role of jasmonate in the rice (Royza sativa L.) self-defense mechanism using proteome analysis. Electrophoresis 21:2492–2500. doi:10.1002/1522-2683(20000701)21:12<2492::AID-ELPS2492>3.0.CO;2-2

    Article  PubMed  CAS  Google Scholar 

  • Sakai H, Hua J, Chen QG, Cahng C, Medrano LJ, Bleecker AB, Meyerowitz EM (1998) ETR2 is an ETR1-like gene involved in ethylene signaling in Arabidopsis. Proc Natl Acad Sci USA 95:5812–5817. doi:10.1073/pnas.95.10.5812

    Article  PubMed  CAS  Google Scholar 

  • Schmitt B, Schneider B (1999) Dihydrocinnamic acids are involved in the biosynthesis of phenyl phenalenones in Anigozanthos preissii. Phytochemistry 52:45–53. doi:10.1016/S0031-9422(99)00116-8

    Article  CAS  Google Scholar 

  • Schweizer P, Buchala A, Silverman P, Seskar M, Raskin I, Metraus JP (1997) Jasmonate-inducible genes are activated in rice by pathogen attack without a concomitant increase in endogenous jasmonic acid levels. Plant Physiol 114:79–88

    PubMed  CAS  Google Scholar 

  • Summers CB, Felton GW (1994) Prooxidant effects of phenolic acids on the generalist herbivore Helicoverpa zea (Lepidoptera, Noctuidae): potential mode of action for phenolic compounds in plant anti-herbivore chemistry. Insect Biochem Mol Biol 24:943–953. doi:10.1016/0965-1748(94)90023-X

    Article  CAS  Google Scholar 

  • Tscharntke T, Thessen S, Dolch R, Boland W (2001) Herbivory, induced resistance and interplant signal transfer in Alnus glutinosa. Biochem Syst Ecol 29:1025–1047. doi:10.1016/S0305-1978(01)00048-5

    Article  CAS  Google Scholar 

  • Van Poecke RM, Dicke M (2004) Indirect defence of plants against herbivores: using Arabidopsis thaliana as a model plant. Plant Biol (Stuttg) 6:387–401. doi:10.1055/s-2004-820887

    Article  Google Scholar 

  • Walters D, Cowley T, Mitchell A (2002) Methyl jasmonate alters polyamine metabolism and induces systemic protection against powdery mildew infection in barley seedlings. J Exp Bot 53:747–756. doi:10.1093/jexbot/53.369.747

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof Hongbo Gao and Dr. G. Hazenberg for valuable suggestions on the manuscript. This work was collectively supported by the Programme for Changjiang Scholars and the Innovative Research Team in Universities of China (PCSIRT0607), by the Key Science Programme of the State Forestry Administration of China (2006-59) and the National Key Project of Scientific and Technical Supporting Programmes Funded by the Ministry of Science & Technology of China (2006BAD01A15; 2006BAD24B04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingbai Shen.

Additional information

Communicated by D. Treutter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, Z., Shen, Y., Shen, F. et al. Evidence for the signaling role of methyl jasmonate, methyl salicylate and benzothiazole between poplar (Populus simonii × P. pyramidalis ‘Opera 8277’) cuttings. Trees 23, 1003–1011 (2009). https://doi.org/10.1007/s00468-009-0342-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-009-0342-z

Keywords