Skip to main content
Log in

Root suckering patterns in Populus euphratica (Euphrates poplar, Salicaceae)

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

To understand the spatial structure of monospecific Tugai forests (Xinjiang Province, China) growing as gallery woods nourished by ground water, root suckering in Populus euphratica was studied by a combination of morphological and molecular analyses. Seedlings grow a deep tap root and keep this as adult trees, whereas root suckers never develop a tap root but utilize the horizontally stretching root of their parent trees. The resulting reverse “T” root architecture distinguishes reliably even adult root suckers from generatively grown trees. Due to assimilate input from the root sucker, the distal root (pointing away from the parent tree) becomes thicker soon than its proximal root, which allows determination of the direction of vegetative growth. One stand including 279 young trees germinated from seeds and 267 root suckers was mapped completely, and selected suckers were assigned to parent trees by genotyping with microsatellite DNA. Root suckers develop up to 40 m away from parent trees on horizontal “spacer” roots, usually originating not deeper than 20 cm below surface. Trees begin with root suckering between 10 and 15 years, shortly before reaching flowering age. Cutting experiments indicated reduced survival of young root suckers disconnected from the parent tree. Without a tap root and with a rooting point close to the surface, declining ground water levels should lower the fitness of root suckers even more than that of generatively grown trees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Banno H, Ikeda Y, Niu OW, Chua NH (2001) Over expression of Arabidopsis ESR1 induces initiation of shoot regeneration. Plant Cell 13:2609–2618

    Article  PubMed  CAS  Google Scholar 

  • Barnes BV (1966) The clonal growth habit of American aspens. Ecology 47:439–447. doi:10.2307/1932983

    Article  Google Scholar 

  • Bärring U (1988) On the reproduction of aspen (Populus tremula L.) with emphasis on its suckering ability. Scand J For Res 3:229–240. doi:10.1080/02827588809382511

    Article  Google Scholar 

  • Blake TJ, Atkinson SM (1986) The physiological role of abscisic acid in the rooting of poplar and aspen stump sprouts. Physiol Plant 67:638–643. doi:10.1111/j.1399-3054.1986.tb05070.x

    Article  CAS  Google Scholar 

  • Bosela MJ, Ewers FW (1997) The mode of origin of root buds and root sprouts in the clonal tree Sassafras albidum (Lauraceae). Am J Bot 84:1466–1481. doi:10.2307/2446609

    Article  Google Scholar 

  • Bruelheide H, Manegold M, Jandt U (2004) The genetic structure of Populus euphratica and Alhagi sparsifolia stands in the Taklimakan desert. In: Runge M, Zhang X (eds) Ecophysiology and habitat requirements of perennial plant species in the Taklimakan desert. Shaker Verlag, Aachen, pp 153–160

    Google Scholar 

  • Buell MF, Buell HF (1959) Aspen invasion of prairie. Bull Torrey Bot Club 86:264–265. doi:10.2307/2482844

    Article  Google Scholar 

  • Busgen M, Munch E (1929) The structure and life of forest trees, 3rd edn. Wiley, New York

    Google Scholar 

  • Callaghan TV, Carlson BA, Jónsdóttir IS, Svenson BM, Jonasson S (1992) Clonal plants and environmental change. Oikos 63:341–347. doi:10.2307/3544959

    Article  Google Scholar 

  • Cook RE (1985) Growth and development in clonal plants. In: Jackson JBC, Buss LW, Cook RE (eds) Population biology and evolution of clonal organisms. Yale University Press, pp 259–292

  • DeByle NV (1964) Detection of functional intraclonal aspen root connections by tracers and excavation. For Sci 10:386–396

    Google Scholar 

  • Del Tredici P (2001) Sprouting in temperate trees: a morphological and ecological review. Bot Rev 67:121–140. doi:10.1007/BF02858075

    Article  Google Scholar 

  • Erikson O, Jerling L (1990) Hierarchical selection and risk spreading in clonal plants. In: van Groenendael J, de Kroon H (eds) Clonal growth in plants: regulation and function. SPB Academic Publishing, Hague, pp 79–94

    Google Scholar 

  • Eusemann P, Fehrenz S, Schnittler M (2009) Development of two microsatellite multiplex PCR systems for high throughput genotyping in Populus euphratica. J For Res (accepted)

  • Farmer RE (1962) Aspen root sucker formation and apical dominance. For Sci 8:403–410

    Google Scholar 

  • Gavin DG, Peart DR (1999) Vegetative life history of a dominant rain forest canopy tree. Biotropica 31:288–294. doi:10.1111/j.1744-7429.1999.tb00140.x

    Article  Google Scholar 

  • Good R (1964) The geography of the flowering Plants. Wiley, New York

    Google Scholar 

  • Gries D, Zeng F, Foetzki A, Arndt SK, Bruelheide H, Thomas FM, Zhang X, Runge M (2003) Growth and water relations of Tamarix ramosissima and Populus euphratica on Taklamakan desert dunes in relation to depth to a permanent water table. Plant Cell Environ 26:725–736. doi:10.1046/j.1365-3040.2003.01009.x

    Article  Google Scholar 

  • Gries D, Foetzki A, Arndt SK, Bruelheide H, Thomas FM, Zhang Z, Runge M (2005) Production of perennial vegetation in an oasis-desert transition zone in NW China—allometric estimation, and assessment of flooding and use effects. Plant Ecol 181:23–43. doi:10.1007/s11258-004-7808-2

    Article  Google Scholar 

  • Harper JL (1977) Population biology of plants. Academic Press, New York

    Google Scholar 

  • Holm T (1925) On the development of buds upon roots and leaves. Ann Bot (Lond) 39:867–881

    Google Scholar 

  • Jenik J (1994) Clonal growth in woody plants: a review. Folia Geobot Phytotaxon 29:291–306. doi:10.1007/BF02803802

    Article  Google Scholar 

  • Kemperman JA (1978) Sucker-root relationships in aspen. For Res Notes 12:1–4

    Google Scholar 

  • Kemperman JA, Barnes BV (1976) Clone size in American aspens. Can J Bot 54:2603–2607. doi:10.1139/b76-280

    Article  Google Scholar 

  • Klekowski EJ Jr (1997) Somatic mutation theory of clonality. In: de Kroon H, van Groenendael J (eds) The ecology and evolution of clonal plants. Backhuys Publishers, Leiden, pp 227–241

    Google Scholar 

  • Klimešová J, Klimeš L (2003) Resprouting of herbs in disturbed habitats: is it adequately described by Bellingham-Sparrow’s model? Oikos 103:225–229. doi:10.1034/j.1600-0706.2003.12725.x

    Article  Google Scholar 

  • Kormanic PP, Brown CL (1967) Root buds and the development of root suckers in sweetgum. For Sci 13:338–345

    Google Scholar 

  • Landa K, Benner B, Watson M, Gartner J (1992) Physiological integration for carbon in mayapple (Podophyllum peltatum), a clonal perennial herb. Oikos 63:348–356. doi:10.2307/3544960

    Article  Google Scholar 

  • Levine CM, Stromberg JC (2001) Effects of flooding on native and exotic plant seedlings: implications for restoring south-western riparian forests by manipulating water and sediment flows. J Arid Environ 49:111–131. doi:10.1006/jare.2001.0837

    Article  Google Scholar 

  • Lian C, Oishi R, Miyashita N, Hogetsu T (2004) High somatic instability of a microsatellite locus in a clonal tree, Robinia pseudoacacia. Theor Appl Genet 108:836–841. doi:10.1007/s00122-003-1500-0

    Article  PubMed  CAS  Google Scholar 

  • Liu M (1997) Atlas of China’s nature and geography. Zhongguo Tuce Chubanshe, Beijing (in Chinese)

    Google Scholar 

  • Marshall C (1990) Source-sink relations of interconnected ramets. In: van Groenendael J, de Kroon H (eds) Clonal growth in plants: regulation and function. SPB Academic Publishing, Hague, pp 23–41

    Google Scholar 

  • Pan JJ, Price JS (2001) Fitness and evolution in clonal plants: the impact of clonal growth. Evol Ecol 15:583–600. doi:10.1023/A:1016065705539

    Article  Google Scholar 

  • Peterson RL (1975) The initiation and development of root buds. In: Torrey JG, Clarkson DT (eds) Development and function of roots. Academic Press, New York, pp 125–162

    Google Scholar 

  • Peterson RL, Jones RH (1997) Clonality in woody plants: a review and comparison with clonal herbs. In: de Kroon H, van Groenendael J (eds) The ecology and evolution of clonal plants. Backhuys Publishers, Leiden, pp 263–289

    Google Scholar 

  • Pitelka LF, Ashmun JW (1985) Physiology and integration of ramets in clonal plants. In: Jackson JBC, Buss LW, Cook RE (eds) Population biology and evolution of clonal organisms. Yale University Press, pp 399–435

  • Price EAC, Marshall C, Hutchings MJ (1992) Studies of growth in the clonal herb Glechoma hederacea. I Patterns of physiological integration. J Ecol 80:25–38. doi:10.2307/2261060

    Article  Google Scholar 

  • Quereshi RA, Spanner DC (1971) Unidirectional movement of tracers along the stolon of Saxifraga sarmentosa. Planta 101:133–146. doi:10.1007/BF00387624

    Article  Google Scholar 

  • Raju MVS, Coupland RT, Steeves TA (1966) On the occurrence of root buds on perennial plants in Saskatchewan. Can J Bot 44:330–337. doi:10.1139/b66-004

    Article  Google Scholar 

  • Rodrigues RR, Torres RB, Metthes LRF, Pentha AS (2004) Tree species sprouting from root buds in a semideciduous forest affected by fires. Braz Arch Biol Technol 47:127–133. doi:10.1590/S1516-89132004000100017

    Article  Google Scholar 

  • Sharma A, Dwivedi BN, Singh B, Kumar K (1999) Introduction of Populus euphratica in Indian semi-arid trans Gangetic plains. Ann For 7:1–8

    Google Scholar 

  • Song Y, Fan Z, Lei Z, Zhang F (2000) Research on water resources and ecology of Tarim River, China. Xinjiang Peoples Press, Urumqi (in Chinese)

    Google Scholar 

  • Thevs N (2007) Ecology, spatial structure, distribution and utilization of the Tugai vegetation at the middle reaches of the Tarim River, Xinjiang, China. Cuvellier, Göttingen

    Google Scholar 

  • Thevs N, Zerbe S, Peper J, Succow M (2008a) Vegetation and vegetation dynamics in the Tarim River floodplain of continental-arid Xinjiang, NW China. Phytocoenologia 38:65–84. doi:10.1127/0340-269X/2008/0038-0065

    Article  Google Scholar 

  • Thevs N, Zerbe S, Schnittler M, Nurbay A, Succow M (2008b) Structure, reproduction and flood-induced dynamics of riparian Tugai forests at the Tarim River in Xinjiang, NW China. Forestry 81:45–57. doi:10.1093/forestry/cpm043

    Article  Google Scholar 

  • Tuskan GA, Gunter LE, Yang ZK, Yin TM, Sewell MM, DiFazio SP (2004) Characterization of microsatellites revealed by genomic sequencing of Populus trichocarpa. Can J Res 34:85–93. doi:10.1139/x03-283

    Article  CAS  Google Scholar 

  • Wang S, Chen B, Li H (1996) Euphrates poplar forest. China Environmental Science Press, Beijing

    Google Scholar 

  • Watson MA, Casper BB (1984) Morphogenetic constraints on patterns of carbon distribution in plants. Annu Rev Ecol Syst 15:233–258. doi:10.1146/annurev.es.15.110184.001313

    Article  Google Scholar 

  • Weisgerber H (1994) Populus euphratica. In: Schütt P (ed) Enzyclopedie der Holzgewächse. Ecomed, Landsberg/Lech

    Google Scholar 

  • Westermann J, Zerbe S, Eckstein D (2008) Age structure and growth of degraded Populus euphratica floodplain forests in north-west China and perspectives for their ecology. J Integr Plant Biol 50:536–546. doi:10.1111/j.1744-7909.2007.00626.x

    Article  PubMed  Google Scholar 

  • Wittrock VB (1884) Om rotskott hos örtartade växter, med särskild hänsyn till deras olika biologiska betydelse. Bot Not 1884:21–37

    Google Scholar 

  • Zahner R, DeByle NV (1965) Effect of pruning the parent root on growth of aspen suckers. Ecology 46:373–375. doi:10.2307/1936349

    Article  Google Scholar 

  • Zimmermann MH, Brown CL (1971) Trees: structure and function. Springer Verlag, Berlin

    Google Scholar 

Download references

Acknowledgments

We wish to thank our Chinese partners from the Department of Environmental resources, Xinjiang University, for help with translation, logistics and their general assistance during the field studies. In particular, the students B. Abula, Sh. Lin, K. Qiongying, W. Yongbin, W. Shan and A. Rozi. N. Abdusalih provided room for laboratory work and helped with critical remarks in the interpretation of root architectures. A special thank is due to Ghalip, our driver during the field work in the Tarim Basin. On the German side (Greifswald University) we are indebted to S. Abel, F. Gahlert, N. Jeschke, and also F. W. Spiegel (University of Arkansas) for help in field work and with tree ring determination. Furthermore we wish to thank V. Liebscher (Department of Biomathematics) for advice with data evaluation; and A. Klahr and S. Fehrenz for advice regarding the laboratory work. Financial support came from grants of the Deutsche Forschungsgemeinschaft (DFG, SCHN 1080/1-1), the VW-Foundation (I/78 636) and the DAAD partnership programe (PPP, D/05/06946).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Schnittler.

Additional information

Communicated by M. Zwieniecki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiehle, M., Eusemann, P., Thevs, N. et al. Root suckering patterns in Populus euphratica (Euphrates poplar, Salicaceae). Trees 23, 991–1001 (2009). https://doi.org/10.1007/s00468-009-0341-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-009-0341-0

Keywords

Navigation