Skip to main content

Advertisement

Log in

Spatial and age-dependent tree-ring growth responses of Larix gmelinii to climate in northeastern China

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Tree-ring width chronologies from 276 Larix gmelinii cores taken in northeastern China were used to analyze spatial and age-dependent growth–climate response relationships. Tree radial growth from five localities showed similar patterns, while exhibiting different tree-ring growth responses to local climate. The rotated principal component analysis (RPCA) indicated that tree age, growing season moisture conditions, and ambient air temperature variations resulted from location differences (e.g., longitude, latitude, and altitude), which could explain the non-stationary spatial climate–growth relations observed. The study tested the fundamental assumption that the climate–growth of L. gmelinii was age independent after the removal of size trends and disturbance signals. The age-related climate–growth relationship might potentially improve the veracity of past climate reconstructions. Bootstrapped correlation function analyses suggested that the response of L. gmelinii radial growth to climate differed between trees ≥150 years old and <150 years old. Mean sensitivity and standard deviation for trees increased with age in the <150 years old tree class; whereas trees ≥150 years old had no significant relationship with age. These results showed that the assumption of age-independent climate–growth relationship is invalid at these sites. Physiological processes and/or hydraulic constraints dependent on tree age, together with detrending techniques could be the possible causal factors of clear age-dependent responses. These results suggested the importance of incorporating trees of all ages into the chronology to recover a detailed climatic signal in a reconstruction of L. gmelinii for this region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baig MN, Tranquillini W (1980) The effects of wind and temperature on cuticular transpiration of Picea abies and Pinus cembra and their significance in desiccation damage at the alpine treeline. Oecologia 47:252–256. doi:10.1007/BF00346828

    Article  Google Scholar 

  • Biondi F, Waikul K (2004) DENDROCLIM2002: A C++ program for statistical calibration of climate signals in tree-ring chronologies. Comput Geosci 30:303–311. doi:10.1016/j.cageo.2003.11.004

    Article  Google Scholar 

  • Bond BJ (2000) Age-related changes in photosynthesis of woody plants. Trends Plant Sci 5:349–353. doi:10.1016/S1360-1385(00)01691-5

    Article  PubMed  CAS  Google Scholar 

  • Bräuning A, Mantwill B (2004) Tree-ring evidence for monsoon variability on the Tibetan plateau during the last 1000 years. Geophys Res Lett 31:L24205. doi:10.1029/2004GL020793

    Article  Google Scholar 

  • Briffa KR, Cook ER (1990) Methods of response function analysis. In: Cook ER, Kairiukstis LA (eds) Methods of dendrochronology. Kluwer Academic Publishers, The Netherlands, pp 240–247

    Google Scholar 

  • Camarero JJ, Gutiérrez E (2000) Age and space-dependent growth-climate relationships as revealed by characteristic tree rings in Pinus uncinata treeline ecotones in the Spanish Central Pyrenees. In: International conference on dendrochronology for the third millenium, Mendoza, Argentine, 27 April 2000

  • Carrer M, Urbinati C (2004) Age-dependent tree-ring growth responses to climate in Larix decidua and Pinus cembra. Ecology 85:730–740. doi:10.1890/02-0478

    Article  Google Scholar 

  • Carrer M, Urbinati C (2006) Long-term change in the sensitivity of tree-ring growth to climate forcing in Larix decidua. New Phytol. doi:10.1111/j.1469-8137.2006.01703.x170:861-872

  • Carrer M, Nola P, Eduard JL, Motta R, Urbinati C (2007) Regional variability of climate–growth relationships in Pinus cembra high elevation forests in the Alps. J Ecol 95:1072–1083

    Article  Google Scholar 

  • Clack SL, Hallgren SW (2004) Age estimation of Quercus marilandica and Quercus stellata: applications for interpreting stand dynamics. Can J For Res. doi:10.1139/x04-020

  • Cleaveland MK (2000) A 963-year reconstruction of summer (JJA) streamflow in the White River, Arkansas, USA, from tree-rings. Holocene 10:33–41. doi:10.1191/095968300666157027

    Article  Google Scholar 

  • Colenutt ME, Luckman BH (1991) Dendrochronological investigation of Larix lyallii at Larch Valley, Alberta. Can J For Res 21:1222–1233. doi:10.1139/x91-171

    Article  Google Scholar 

  • Cook ER (1985) A time-series analysis approach to tree-ring standardisation. PhD Dissertation, University of Arizona, Tucson

  • Cook E, Briffa K, Shiyatov S, Mazepa V (1990) Tree ring standardization and growth-trend estimation. In: Cook ER, Kairiukstis LA (eds) Methods of dendrochronology. Kluwer Academic Publishers, The Netherlands, pp 104–123

    Google Scholar 

  • Cook ER, Meko DM, Stahle DW, Cleaveland MK (1999) Drought reconstructions for the continental United States. J Clim 12:1145–1162. doi:10.1175/1520-0442(1999)012<1145:DRFTCU>2.0.CO;2

    Article  Google Scholar 

  • Cook ER, Glitzenstein JS, Krusic PJ, Harcombe PA (2001) Identifying functional groups of trees in west gulf coast forests (USA): a tree-ring approach. Ecol Appl 11:883–903. doi:10.1890/1051-0761(2001)011[0883:IFGOTI]2.0.CO;2

    Article  Google Scholar 

  • Duff GH, Nolan NJ (1953) Growth and morphogenesis in the Canadian forest species. I. The controls of cambial and apical activity in Pinus resinosa Ait. Can J Bot 31:471–513. doi:10.1139/b53-037

    Article  Google Scholar 

  • England JR, Attiwill PM (2006) Changes in leaf morphology and anatomy with tree age and height in the broadleaved evergreen species, Eucalyptus regnans F. Muell. Trees (Berl). doi:10.1007/s00468-005-0015-5

  • Farjon A (1990) Pinaceae. Koeltz Scientific Books, Konigstein, Germany

    Google Scholar 

  • Fritts HC (1976) Tree rings and climate. Academic Press, New York

    Google Scholar 

  • Fu LK, Li N, Mill RR (1999) Larix. In: Wu ZY, Raven PH (eds) Flora of China (4). Science Press, Beijing and Missouri Botanical Garden Press, St. Louis, pp 33–37

    Google Scholar 

  • Gray BM (1982) Comment on transfer functions. In: Hughes MK, Kelly PM, Pilcher JR, LaMarche VC (eds) Climate from tree rings. Cambridge University Press, Cambridge, UK, pp 56–58

    Google Scholar 

  • Guiot J (1991) The bootstrapped response function. Tree Ring Bull 51:39–41

    Google Scholar 

  • Harcombe PA (1987) Tree life tables. Bioscience 37:557–568. doi:10.2307/1310666

    Article  Google Scholar 

  • Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree Ring Bull 43:69–75

    Google Scholar 

  • Holmes RL (1994) Dendrochronology program library user’s manual. Laboratory of Tree-Ring Research University, Arizona, Tucson

    Google Scholar 

  • Jackson DA (1993) Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology 74:2204–2214. doi:10.2307/1939574

    Article  Google Scholar 

  • Kirdyanov A, Hughes M, Vaganov E, Schweingruber F, Silkin P (2003) The importance of early summer temperature and date of snow melt for tree growth in the Siberian Subarctic. Trees (Berl). doi:10.1007/s00468-002-0209-z

  • Kirkpatrick M (1981) Spatial and age dependent patterns of growth in New England black birch. Am J Bot 68:535–543. doi:10.2307/2443030

    Article  Google Scholar 

  • Kozlowski TT (1971) Growth and development of trees. Academic Press, New York

    Google Scholar 

  • Kramer PJ, Kozlowski TT (1979) Physiology of woody plants. Academic Press, New York

    Google Scholar 

  • Kujansuu J, Yasue K, Koike T, Abaimov AP, Kajimoto T, Takeda T, Tokumoto M, Matsuura Y (2007) Climatic responses of tree-ring widths of Larix gmelinii on contrasting north-facing and south-facing slopes in central Siberia. J Wood Sci. doi:10.1007/s10086-006-0837-9

  • Linderholm HW, Linderholm K (2004) Age-dependent climate sensitivity of Pinus sylvestris L. in the central Scandinavian Mountains. Boreal Environ Res 9:307–317

    Google Scholar 

  • Metsaranta JM, Lieffers VJ, Wein RW (2008) Dendrochronological reconstruction of jack pine snag and downed log dynamics in Saskatchewan and Manitoba, Canada. For Ecol Manag. doi:10.1016/j.foreco.2007.10.030

  • Naurzbaev MM, Vaganov EA, Sidorova OV, Schweingruber FH (2002) Summer temperatures in eastern Taimyr inferred from a 2427-year late-Holocene tree-ring chronology and earlier floating series. Holocene 12:727–736. doi:10.1191/0959683602hl586rp

    Article  Google Scholar 

  • Oberhuber W, Kofler W (2000) Topographic influences on radial growth of scots pine (Pinus sylvestris L.) at small spatial scales. Plant Ecol 146:213–240. doi:10.1023/A:1009827628125

    Article  Google Scholar 

  • Ogle K, Whitham TG, Cobb NS (2000) Tree-ring variation in pinyon predicts likelihood of death following severe drought. Ecology 81:3237–3243

    Article  Google Scholar 

  • Pfeifer K, Kofler W, Oberhuber W (2005) Climate related causes of distinct radial growth reductions in Pinus cembra during the last 200 year. Veg Hist Archaeobot. doi:10.1007/s00334-005-0001-2

  • Richman MB (1986) Rotation of principal components. J Climatol 6:293–335. doi:10.1002/joc.3370060305

    Article  Google Scholar 

  • Rossi S, Deslauriers A, Anfodillo T, Carrer M (2008) Age-dependent xylogenesis in timberline conifers. New Phytol. doi:10.1111/j.1469-8137.2007.02235.x

  • Rozas V (2005) Dendrochronology of pedunculate oak (Quercus robur L.) in an old-growth pollarded woodland in northern Spain: tree-ring growth responses to climate. Ann Sci. doi:10.1051/forest:2005012

  • Ryan MG, Yoder BJ (1997) Hydraulic limits to tree height and tree growth. Bioscience 47:235–242. doi:10.2307/1313077

    Article  Google Scholar 

  • Ryan MG, Binkley D, Fownes JH (1997) Age related decline in forest productivity: pattern and process. Adv Ecol Res 27:213–262. doi:10.1016/S0065-2504(08)60009-4

    Article  Google Scholar 

  • Szeicz JM, MacDonald GM (1994) Age-dependent tree-ring growth response of subarctic white spruce to climate. Can J Res 24:120–132. doi:10.1139/x94-017

    Article  Google Scholar 

  • Tranquillini W (1979) Physiological ecology of the alpine timberline. Springer-Verlag, Berlin

    Google Scholar 

  • Vaganov EA, Hughes MK, Kirdyanov AV, Schweingruber FH, Silkin PP (1999) Influence of snowfall and melt timing on tree growth in subarctic Eurasia. Nature 400:149–151. doi:10.1038/22087

    Article  CAS  Google Scholar 

  • Wang LL, Shao XM, Huang L, Liang EY (2005a) Tree-ring characteristics of Larix gmelinii and Pinus sylvestris var. mongolica and their response to climate in Mohe, China. Acta Phytoecol Sin 29:380–385 (in Chinese, with English abstract)

    Google Scholar 

  • Wang T, Ren H, Ma K (2005b) Climatic signals in tree ring of Picea schrenkiana along an altitudinal gradient in the central Tianshan Mountains, northwestern China. Trees (Berl). doi:10.1007/s00468-005-0003-9

  • Wang X, Zhang Q, Ma K, Xiao S (2008) A tree-ring record of 500-year dry-wet changes in northern Tibet, China. Holocene. doi:10.1177/0959683608089212

  • Wilson R, Elling W (2004) Temporal instability in tree-growth/climate response in the Lower Bavarian Forest region: implications for dendroclimatic reconstruction. Trees (Berl). doi:10.1007/s00468-003-0273-z

  • Yu G, Liu Y, Wang X (2008) Age-dependent tree-ring growth responses to climate in Qilian juniper (Sabina przewalskii Kom.). Trees. doi:10.1007/s00468-007-0170-y

  • Zyryanova OA, Yaborov VT, Tchikhacheva TL, Koike T, Makoto K, Matsuura Y, Satoh F, Zyryanov VI (2007) The structure and biodiversity after fire disturbance in Larix gmelinii (Rupr.) Rupr. forests, northeastern Asia. Eur J For Res 10(1):19–29

    Google Scholar 

Download references

Acknowledgments

This research was supported by the General and Major Programs of the National Natural Science Foundation of China (Grant Nos. 30770407 and 30590383, respectively), the Key Project in the National Science and Technology Pillar Program during the Eleventh Five-year Plan Period (No. 2006BAD03A0404), and the Innovative Foundation Project for Outstanding Young Teachers of Northeast Forestry University. We greatly thank the Tree-Ring Laboratory, Institute of Botany, Chinese Academy of Sciences for the assistance of ring-width measurement. We are grateful to Qi-Bin Zhang and Thomas New for their valuable comments and discussion on earlier drafts of this manuscript. We are also appreciative of the field assistance received from the Tahe, Mohe, Mangui, and Huzhong Forestry Bureaus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaochun Wang.

Additional information

Communicated by H. Rennenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Zhang, Y. & McRae, D.J. Spatial and age-dependent tree-ring growth responses of Larix gmelinii to climate in northeastern China. Trees 23, 875–885 (2009). https://doi.org/10.1007/s00468-009-0329-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-009-0329-9

Keywords

Navigation