Skip to main content
Log in

Diurnal and annual rhythms in trees

  • Review
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Trees, perennial phanerophytes, display a rich variety of rhythmic phenomena. These are either due to exclusive environmental entrainment or due to the functioning of endogenous oscillators independent of the environment. Both types of rhythms are covered in this review. Purely environment controlled rhythms may be considered as a prelude to endogenous rhythms. Environment controlled rhythms discussed are (i) the diurnal rhythms of nyctinastic and heliotropic leaf movements and oscillatory phenomena of photosynthesis, such as the midday depression and Crassulacean acid metabolism (CAM), and (ii) the annual rhythms of annual growth ring formation, autumnal leaf senescence, over wintering mechanisms and flowering. Among the diurnal rhythms, nyctinastic movements and CAM are also free-running endogenous rhythms showing the operation of circadian clocks in trees. In leaf senescence, over wintering, and flowering control, photoperiod sensing is involved which suggests the participation of endogenous clocks. A question asked is if diurnal and annual rhythms are mechanistically correlated. Evidently, phenological phenomena based on photoperiodism (as dependent on measurement of night length) are co-ordinately regulated by the phytochrome system and the circadian clocks and many aspects of annual developments and over wintering are linked to photoperiodism. The existence in trees of circadian clock genes as known to be anchored in the genome of A. thaliana can be assessed by attempts of alignment with the sequenced genome of Populus or by isolating cDNA clones from trees to check them against the genome of A. thaliana. At extreme latitudes near the equator and north of the polar circle trees also display photoperiod-independent phenological phenomena. In the polar region, total irradiance of red and far red light could possibly be involved and the signalling pathway then involves phytochrome, and thus, may still be similar to that of photoperiodism. At the equator, total daily light irradiance received or sensing the dynamics of daily changes in solar irradiance are essential and it remains enigmatic whether signalling cascades are either attached to the circadian clocks in a still unknown way or totally independent of circadian clocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Andersson A, Keskitalo J, Sjödin A, Bhalerao R, Sterky F, Wissel K, Tandre K, Aspeborg H, Moyle R, Ohmiya Y et al (2004) A transcriptional time table of autumn senescence. Genome Biol 5R:24. doi:10.1186/gb-2004-5-4-r24

    Google Scholar 

  • Barbour MM, Walcroft AS, Farquhar GD (2002) Seasonal variation in δ13C and δ18O of cellulose from growth rings of Pinus radiata. Plant Cell Environ 25:1483–1499. doi:10.1046/j.0016-8025.2002.00931.x

    Google Scholar 

  • Bauch J, Eckstein D (1981) Wood biological investigations on panels of Rembrandt paintings. Wood Sci Technol 15:251–263. doi:10.1007/BF00350943

    Google Scholar 

  • Bieniawska Z, Espinoza C, Schlereth A, Sulpize R, Hincha DK, Hannah MA (2008) Disruption of the Arabidopsis circadian clock is responsible for extensive variation in the cold-responsive transcriptome. Plant Physiol 147:263–279. doi:10.1104/pp.108.118059

    PubMed  CAS  Google Scholar 

  • Bigras FJ, Colombo SJ (2001) Conifer cold hardiness. Kluwer, Dordrecht

    Google Scholar 

  • Björkman O, Demmig B (1987) Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170:489–504. doi:10.1007/BF00402983

    Google Scholar 

  • Böhlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, Strauss SH, Nilsson O (2006) CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312:1040–1043. doi:10.1126/science.1126038

    PubMed  Google Scholar 

  • Bohn A, Rascher U, Hütt M-T, Kaiser F, Lüttge U (2002) Responses of a plant circadian rhythm to thermoperiodic perturbations with asymmetric temporal patterns and the rate of temperature change. Biol Rhythm Res 33:151–170. doi:10.1076/brhm.33.2.151.1318

    Google Scholar 

  • Bohn A, Hinderlich S, Hütt M-T, Kaiser F, Lüttge U (2003) Identification of rhythmic subsystems in the circadian cycle of Crassulacean acid metabolism under thermoperiodic perturbations. Biol Chem 384:721–728. doi:10.1515/BC.2003.080

    PubMed  CAS  Google Scholar 

  • Borchert R (2000) Organismic and environmental controls of bud growth in tropical trees: In: Viemont JD, Crabbè J (eds) Dormancy in plants: from whole plant behaviour to cellular control. CAB International Wallingford, pp 87–107

  • Borchert R, Rivera G (2001) Photoperiodic control of seasonal development and dormancy in tropical stem-succulent trees. Tree Physiol 21:213–221

    PubMed  CAS  Google Scholar 

  • Borchert R, Renner SS, Calle Z, Navarrete D, Tye A, Gautier L, Spichiger R, von Hildebrand P (2005) Photosynthetic induction of synchronous flowering near the equator. Nature 433:627–629. doi:10.1038/nature03259

    PubMed  CAS  Google Scholar 

  • Borchert R, Schlumpberger BO, Calle Z, Piedrahita L, Leftin A, Hammer SA, Tye A, Renner SS (2008) Seasonal variation in insolation is the time giver for synchronous flowering between the equator and 50°N. Submitted manuscript under review, made available as personal communication

  • Boxall SF, Foster JM, Bohnert HJ, Cushman JC, Nimmo HG, Hartwell J (2005) Conservation and divergence of circadian clock operation in a stress-inducible Crassulacean acid metabolism species reveals clock compensation against stress. Plant Physiol 137:969–982. doi:10.1104/pp.104.054577

    PubMed  CAS  Google Scholar 

  • Briffa KR, Bartholin TS, Eckstein D, Jones PD, Karlén W, Schweingruber FH, Zetterberg P (1990) A 1400-year tree-ring record of summer temperatures in Fennoscandia. Nature 346:434–439. doi:10.1038/346434a0

    Google Scholar 

  • Briffa KR, Jones PD, Schweingruber FH, Shiyatov SG, Cook ER (1995) Unusual twentieth-century summer warmth in a 1000-year temperature record from Siberia. Nature 376:156–159. doi:10.1038/376156a0

    CAS  Google Scholar 

  • Bucci SJ, Scholz FG, Goldstein G, Meinzer FC, Sternberg L da Sl (2003) Dynamic changes in hydraulic conductivity in petioles of two savanna tree species: factors and mechanisms contributing to the refilling of embolized vessels. Plant Cell Environ 26:1633–1645. doi:10.1046/j.0140-7791.2003.01082.x

    Google Scholar 

  • Buchanan-Wollaston V (1997) The molecular biology of leaf senescence. J Exp Bot 48:181–199. doi:10.1093/jxb/48.2.181

    Google Scholar 

  • Caldas LS, Lüttge U, Franco AC, Haridasan M (1997) Leaf heliotropism in Pterodon pubescens, a woody legume from the Brazilian cerrado. Rev Bras Fisiol Vegetal 9:1–7

    Google Scholar 

  • Callado CH, da Silva Neto SJ, Scarano FR, Costa CG (2001) Periodicity of growth rings in some flood-prone trees of the Atlantic Rain Forest in Rio de Janeiro, Brazil. Trees (Berl) 15:492–497

    Google Scholar 

  • Coster C (1927) Zur Anatomie und Physiologie der Zuwachszonen und Jahresringbildung in den Tropen I. Ann Jard Buitenzorg 37:49–161

    Google Scholar 

  • Coster C (1928) Zur Anatomie und Physiologie der Zuwachszonen und Jahresringbildung in den Tropen II. Ann Jard Buitenzorg 38:1–114

    Google Scholar 

  • Coté GG, DePass AL, Quarmby LM, Tate BF, Morse MJ, Satter RL, Crain RC (1989) Separation and characterisation of inositol phospholipids from the pulvini of Samanea saman. Plant Physiol 90:1422–1428. doi:10.1104/pp.90.4.1422

    PubMed  Google Scholar 

  • De Mairan J (1729) Observation botanique. In: Histoire de l’Académie Royale des Sciences, Acad Roy Sci, Paris, pp 35–36

  • De Mattos EA, Lobo PC, Joly CA (2002) Overnight rainfall inducing rapid changes in photosynthetic behaviour in a cerrado woody species during a dry spell amidst the rainy season. Aust J Bot 50:241–246. doi:10.1071/BT01023

    Google Scholar 

  • Denne MP (1971) Temperature and tracheid development in Pinus sylvestris seedlings. J Exp Bot 22:362–370. doi:10.1093/jxb/22.2.362

    Google Scholar 

  • Denne MP, Dodd RS (1981) The environmental control of xylem differentiation. In: Barnett JR (ed) Xylem cell development. Castle House, Kent, pp 236–255

    Google Scholar 

  • Dodd AN, Salathia N, Hall A, Kevei E, Toth R, Nagy F, Hibberd JM, Millar AJ, Webb AAR (2005) Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309:630–633. doi:10.1126/science.1115581

    PubMed  CAS  Google Scholar 

  • Domec J-C, Scholz FG, Bucci SJ, Meinzer FC, Goldstein G, Villalobos-Vega R (2006) Diurnal and seasonal variation in root xylem embolism in neotropical savanna woody species: impact on stomatal control of plant water status. Plant Cell Environ 29:26–35. doi:10.1111/j.1365-3040.2005.01397.x

    PubMed  CAS  Google Scholar 

  • Dore J (1959) Response of rice to small differences in length of day. Nature 183:413–414. doi:10.1038/183413a0

    Google Scholar 

  • Duarte HM, Lüttge U (2007) Circadian rhythmicity. In: Lüttge U (ed) Clusia. A woody neotropical genus of remarkable plasticity and diversity. Ecological studies, vol 194. Springer, Berlin, pp 245–256

    Google Scholar 

  • Dünisch O, Montóia VR, Bauch J (2003) Dendroecological investigations on Swietenia macrophylla King and Cedrela odorata L. (Melicaceae) in the central Amazon. Trees (Berl) 17:244–250

    Google Scholar 

  • Dupouey J-L, Leavitt S, Choisnel E, Jourdain S (1993) Modelling carbon isotope fractionation in tree rings based on effective evapotranspiration and soil water status. Plant Cell Environ 16:939–947. doi:10.1111/j.1365-3040.1993.tb00517.x

    CAS  Google Scholar 

  • Eckstein D (2004) Change in past environments—secrets of the tree hydrosystem. New Phytol 163:1–4. doi:10.1111/j.1469-8137.2004.01117.x

    Google Scholar 

  • Edwards TDW, Graf W, Trimborn P, Stichler W, Lipp J, Payer HD (2000) δ13C response surface resolves humidity and temperature signals in trees. Geochim Cosmochim Acta 64:161–167. doi:10.1016/S0016-7037(99)00289-6

    CAS  Google Scholar 

  • Ehleringer J, Forseth I (1980) Solar tracking by plants. Science 210:1094–1098. doi:10.1126/science.210.4474.1094

    PubMed  Google Scholar 

  • Fonti P, García-González I (2004) Suitability of chestnut earlywood vessel chronologies for ecological studies. New Phytol 163:77–86. doi:10.1111/j.1469-8137.2004.01089.x

    Google Scholar 

  • Fowler SG, Cook D, Thomashow MF (2005) Low temperature induction of Arabidopsis CBF1, 2 and 3 is gated by the circadian clock. Plant Physiol 137:961–968. doi:10.1104/pp.104.058354

    PubMed  CAS  Google Scholar 

  • Franco AC, Lüttge U (2002) Midday depression in savanna trees: coordinated adjustments in photochemical efficiency, photorespiration, CO2 assimilation and water use efficiency. Oecologia 131:356–365. doi:10.1007/s00442-002-0903-y

    Google Scholar 

  • Fritts HC (1976) Tree rings and climate. Academic Press, London

    Google Scholar 

  • Gourlay ID (1995) Growth ring characteristics of some African Acacia species. J Trop Ecol 11:121–140

    Article  Google Scholar 

  • Heide OM (1974) Growth and dormancy in Norway spruce ecotypes (Picea abies). I. Interaction of photoperiod and temperature. Physiol Plant 30:1–12. doi:10.1111/j.1399-3054.1974.tb04983.x

    Google Scholar 

  • Helle G, Schleser GH (2004) Beyond CO2-fixation by Rubisco—an interpretation of 13C/12C variations in tree rings from novel intra-seasonal studies on broadleaf trees. Plant Cell Environ 27:367–380. doi:10.1111/j.0016-8025.2003.01159.x

    CAS  Google Scholar 

  • Hillman WS, Koukari WL (1967) Phytochrome effects in the nyctinastic leaf movements of Albizzia julibrissin and some other legumes. Plant Physiol 42:1413–1418. doi:10.1104/pp.42.10.1413

    PubMed  CAS  Google Scholar 

  • Hütt M-T, Lüttge U (2005) Network dynamics in plant biology: current progress in historical perspective. Prog Bot 66:277–310. doi:10.1007/3-540-27043-4_12

    Google Scholar 

  • Johnsen Ø, Dæhlen OG, Østreng G, Skrøppa T (2005a) Daylength and temperature during seed production interactively affect adaptive performance of Picea abies progenies. New Phytol 168:589–596. doi:10.1111/j.1469-8137.2005.01538.x

    PubMed  Google Scholar 

  • Johnsen Ø, Fossdal CG, Nagy N, Mølmann J, Dæhlen OG, Skrøppa T (2005b) Climatic adaptation in Picea abies progenies is affected by the temperature during zygotic embryogenesis and seed maturation. Plant Cell Environ 28:1090–1102. doi:10.1111/j.1365-3040.2005.01356.x

    CAS  Google Scholar 

  • Johnson CH, Golden SS (1999) Circadian programs in cyanobacteria: adaptiveness and mechanisms. Annu Rev Microbiol 53:389–409. doi:10.1146/annurev.micro.53.1.389

    PubMed  CAS  Google Scholar 

  • Jordan BR (ed) (2006) The molecular biology and biotechnology of flowering, 2nd edn. CAB International, Wallingford

  • Junttila O (1976) Apical growth cessation and shoot tip abscission in Salix. Physiol Plant 38:278–286. doi:10.1111/j.1399-3054.1976.tb04004.x

    CAS  Google Scholar 

  • Junttila O (1980) Effect of photoperiod and temperature on apical growth cessation in two ecotypes of Salix and Betula. Physiol Plant 48:347–352. doi:10.1111/j.1399-3054.1980.tb03266.x

    Google Scholar 

  • Junttila O (2007) Regulation of annual shoot growth cycle in northern tree species. In: Taulavuori E, Taulavuori K (eds) Physiology of northern plans under changing environment. Research Signpost, Kerala, pp 177–210

    Google Scholar 

  • Keskitalo J, Bergquist G, Gardeström P, Jansson S (2005) A cellular timetable of autumn senescence. Plant Physiol 139:1635–1648. doi:10.1104/pp.105.066845

    PubMed  CAS  Google Scholar 

  • Kienast F, Schweingruber FH, Bräker OU, Schär E (1987) Tree-ring studies on conifers along ecological gradients and the potential of single-year analyses. Can J For Res 17:683–696. doi:10.1139/x87-111

    Google Scholar 

  • Kim HJ, Coté GG, Crain RC (1992) Effects of light on the membrane potential of protoplasts from Samanea saman pulvini. Involvement of K+ channels and the H+-ATPase. Plant Physiol 99:1532–1539. doi:10.1104/pp.99.4.1532

    PubMed  CAS  Google Scholar 

  • Kim HJ, Coté GG, Crain RC (1993) Potassium channels in Samanea saman protoplasts controlled by phytochrome and the biological clock. Science 260:960–962. doi:10.1126/science.260.5110.960

    PubMed  CAS  Google Scholar 

  • Kim HJ, Coté GG, Crain RC (1996) Inositol 1, 4, 5-triphosphate may mediate closure of K+ channels by light and darkness in Samanea saman motor cells. Planta 198:279–287. doi:10.1007/BF00206254

    PubMed  CAS  Google Scholar 

  • Koller D (1990) Light driven leaf movements. Plant Cell Environ 13:615–632. doi:10.1111/j.1365-3040.1990.tb01079.x

    Google Scholar 

  • Kosová K, Vítámvás P, Prášil IT (2007) The role of dehydrins in plant response to cold. Biol Plant 51:601–617. doi:10.1007/s10535-007-0133-6

    Google Scholar 

  • Lee Y, Satter RJ (1987) H+-uptake and release during circadian rhythmic movements of excised Samanea motor organs. Plant Physiol 83:856–862. doi:10.1104/pp.83.4.856

    PubMed  CAS  Google Scholar 

  • Lee Y, Satter RJ (1989) Effects of white, blue and red light and darkness on pH of the apoplast in the Samanea pulvinus. Planta 178:31–40. doi:10.1007/BF00392524

    Google Scholar 

  • Lee DW, O’Keele J, Holbrook NM, Feild TS (2003) Pigment dynamics and autumn leaf senescence in a New England deciduous forest, eastern USA. Ecol Res 18:677–694. doi:10.1111/j.1440-1703.2003.00588.x

    CAS  Google Scholar 

  • Lim PO, Kim HJ, Nam HG (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136. doi:10.1146/annurev.arplant.57.032905.105316

    PubMed  CAS  Google Scholar 

  • Lipavská H, Svobodová H, Albrechtová J (2001) Annual dynamics of the content of non-structural saccharides in the context of structural development of vegetative buds of Norway spruce. J Plant Physiol 157:365–373

    Google Scholar 

  • Liu Y, Tsinoremans NF, Johnson CH, Lebedeca NV, Golden SS, Ishiura M, Kondo TI (1995) Circadian orchestration of gene expression in cyanobacteria. Genes Dev 9:1469–1478. doi:10.1101/gad.9.12.1469

    PubMed  CAS  Google Scholar 

  • Lloyd D (2006) Ultradian rhythms and clocks in plants and yeast. Biol Rhythm Res 37:281–296. doi:10.1080/09291010600804379

    CAS  Google Scholar 

  • Lloyd D, Murray DB (2005) Ultradian metronome: timekeeper for orchestration of cellular coherence. Trends Biochem Sci 30:373–377. doi:10.1016/j.tibs.2005.05.005

    PubMed  CAS  Google Scholar 

  • Lloyd D, Murray DB (2007) Redox rhythmicity: clocks at the core of temporal coherence. Bioessays 29:465–473. doi:10.1002/bies.20575

    PubMed  CAS  Google Scholar 

  • Lüttge U (2000) The tonoplast functioning as the master switch for circadian regulation of Crassulacean acid metabolism. Planta 211:761–769. doi:10.1007/s004250000408

    PubMed  Google Scholar 

  • Lüttge U (2003a) Circadian rhythmicity: is the “biological clock” hardware or software? Prog Bot 64:277–319

    Google Scholar 

  • Lüttge U (2003b) Circadian rhythms. In: Thomas B, Murphy DJ, Murray BG (eds) Encyclopedia of applied plant sciences. Elsevier, Academic Press, Amsterdam, pp 1084–1096

    Google Scholar 

  • Lüttge U (2004) Ecophysiology of Crassulacean acid metabolism (CAM). Ann Bot (Lond) 94:629–652. doi:10.1093/aob/mch087

    Google Scholar 

  • Lüttge U (2006) Photosynthetic flexibility and ecophysiological plasticity: questions and lessons from the genus Clusia, the only CAM tree, in the neotropics. New Phytol 171:7–25. doi:10.1111/j.1469-8137.2006.01755.x

    PubMed  Google Scholar 

  • Lüttge U (ed 2007a) Clusia. A woody neotropical genus of remarkable plasticity and diversity. Ecological studies, vol 194. Springer, Berlin

  • Lüttge U (2007b) Photosynthesis. In: Lüttge U (ed) Clusia. A woody neotropical genus of remarkable plasticity and diversity. Ecological studies, vol 194. Springer, Berlin, pp 135–186

    Google Scholar 

  • Lüttge U (2008a) Stem CAM in arborescent succulents. Trees (Berl) 22:139–148. doi:10.1007/s00468-007-0198-z

    Google Scholar 

  • Lüttge U (2008b) Clusia: Holy grail and enigma. J Exp Bot 59:1503–1514. doi:10.1093/jxb/ern006

    PubMed  Google Scholar 

  • Lüttge U, Beck F (1992) Endogenous rhythms and chaos in Crassulacean acid metabolism. Planta 188:28–38. doi:10.1007/BF01160709

    Google Scholar 

  • Lüttge U, Higinbotham N (1979) Transport in plants. Springer, New York

  • Lüttge U, Klauke B, Griffiths H, Smith JAC, Stimmel K-H (1986) Comparative ecophysiology of CAM and C3 bromeliads. V. Gas exchange and leaf structure of the C3 bromeliad Pitcairnia integrifolia. Plant Cell Environ 9:411–419. doi:10.1111/j.1365-3040.1986.tb01754.x

  • Matile P (1992) Chloroplast senescence. In: Baker NR, Thomas H (eds) Crop photosynthesis: spatial and temporal determinants. Elsevier, Amsterdam, pp 413–440

    Google Scholar 

  • Matile P, Winkenbach F (1971) Function of lysosomes and lysosomal enzymes in the senescing corolla of the morning glory (Ipomoea purpurea). J Exp Bot 22:759–771. doi:10.1093/jxb/22.4.759

    CAS  Google Scholar 

  • McClung CR (2000) Circadian rhythms in plants: a millennium view. Physiol Plant 109:359–371. doi:10.1034/j.1399-3054.2000.100401.x

    CAS  Google Scholar 

  • Medina E (1982) Physiological ecology of neotropical savanna plants. In: Huntles BJ, Walker BH (eds) Ecoloical studies, vol 42: ecology of tropical savannas. Springer, Berlin, pp 308–335

    Google Scholar 

  • Michael TP, McClung CR (2003) Enhancer trapping reveals widespread circadian clock transcriptional control in Arabidopsis. Plant Physiol 132:629–639. doi:10.1104/pp.021006

    PubMed  CAS  Google Scholar 

  • Mølmann JA, Junttila O, Johnsen Ø, Olsen JE (2006) Effects of red, far red and blue light in maintaining growth in latitudinal populations of Norway spruce (Picea abies). Plant Cell Environ 29:166–172. doi:10.1111/j.1365-3040.2005.01408.x

    PubMed  Google Scholar 

  • Moran N, Ehrenstein G, Iwasa K, Mischke C, Bare C, Satter RL (1988) Potassium channels in motor cells of Samanea saman. A patch clamp study. Plant Physiol 88:643–648. doi:10.1104/pp.88.3.643

    PubMed  Google Scholar 

  • Moshelion M, Moran N (2000) Potassium-efflux channels in extensor and flexor cells of the motor organ of Samanea saman are not identical. Effects of cytosolic calcium. Plant Physiol 124:911–919. doi:10.1104/pp.124.2.911

    PubMed  CAS  Google Scholar 

  • Moshelion N, Becker D, Biela A, Uehlein N, Hedrich R, Otto B, Levi H, Moran N, Kaldenhoff R (2002) Plasma membrane aquaporins in the motor cells of Samanea saman: diurnal and circadian regulation. Plant Cell 14:727–739. doi:10.1105/tpc.010351

    PubMed  CAS  Google Scholar 

  • Nimmo HG (2000) The regulation of phosphoenolpyruvate carboxylase in CAM plants. Trends Plant Sci 5:75–80. doi:10.1016/S1360-1385(99)01543-5

    PubMed  CAS  Google Scholar 

  • Njoku E (1963) Seasonal periodicity in the growth and development of some forest trees in Nigeria. J Ecol 51:617–624. doi:10.2307/2257750

    Google Scholar 

  • Olsen JE, Junttila O (2002) Far red end-of-day treatment restores wild type-like plant length in hybrid aspen overexpressing phytochrome A. Physiol Plant 115:448–457. doi:10.1034/j.1399-3054.2002.1150315.x

    PubMed  CAS  Google Scholar 

  • Ouyang Y, Andersson CR, Kondo T, Golden SS, Johnson CH (1998) Resonating circadian clocks enhance fitness in cyanobacteria. Proc Natl Acad Sci USA 95:8660–8664. doi:10.1073/pnas.95.15.8660

    PubMed  CAS  Google Scholar 

  • Pathre U, Sinha AK, Shirke PA, Sane PV (1998) Factors determining the midday depression of photosynthesis in trees under monsoon climate. Trees (Berl) 12:472–481. doi:10.1007/s004680050177

    Google Scholar 

  • Penfield S (2008) Temperature perception and signal transduction in plants. New Phytol 179:615–628. doi:10.1111/j.1469-8137.2008.02478.x

    PubMed  CAS  Google Scholar 

  • Pfeffer W (1907) Untersuchungen über die Entstehung der Schlafbewegungen der Blattorgane. Abh Math Phys Kl Kgl Sächs Ges Wiss 30 III:259–472

    Google Scholar 

  • Pfeffer W (1915) Beiträge zur Kenntnis der Entstehung der Schlafbewegungen. Abh Math Phys Kl Kgl Sächs Ges Wiss 34 I:1–154

    Google Scholar 

  • Puhakainen T, Li C, Boije-Malm M, Kangasjärvi J, Heino P, Palva ET (2004) Short-day potentiation of low temperature-induced gene expression of a C-repeat-binding factor-controlled gene during cold acclimation in silver birch. Plant Physiol 136:4299–4307. doi:10.1104/pp.104.047258

    PubMed  CAS  Google Scholar 

  • Racusen RH, Satter RL (1975) Rhythmic and phytochrome-regulated changes in transmembrane potential in Samanea pulvini. Nature 225:408–410. doi:10.1038/255408a0

    Google Scholar 

  • Ramos A, Pérez-Solís E, Ibáñez C, Casado R, Collada C, Gómez L, Aragoncillo C, Allona I (2005) Winter disruption of the circadian clock in chestnut. Proc Natl Acad Sci USA 102:7037–7042. doi:10.1073/pnas.0408549102

    PubMed  CAS  Google Scholar 

  • Reich PB, Borchert R (1984) Water stress and tree phenology in a tropical dry forest in the lowlands of Costa Rica. J Ecol 72:61–74. doi:10.2307/2260006

    Google Scholar 

  • Renner SS (2007) Synchronous flowering linked to changes in solar radiation intensity. New Phytol 175:195–197. doi:10.1111/j.1469-8137.2007.02132.x

    PubMed  Google Scholar 

  • Rinne P, Welling A, Kaikuranta P (1998) Onset of freezing tolerance in birch (Betula pubescens Ehrh.) involves LEA proteins and osmoregulation and is impaired in an ABA-deficient genotype. Plant Cell Environ 21:601–611. doi:10.1046/j.1365-3040.1998.00306.x

  • Rivera G, Borchert R (2001) Induction of flowering in tropical trees by a 30-min reduction in photoperiod: evidence from field observations and herbarium collections. Tree Physiol 21:201–212

    PubMed  CAS  Google Scholar 

  • Rivera G, Elliott S, Caldas LS, Nicolossi G, Coradin VTR, Borchert R (2002) Increasing day-length induces spring flushing of tropical dry forest trees in the absence of rain. Trees (Berl) 16:445–456. doi:10.1007/s00468-002-0185-3

    Google Scholar 

  • Rohde A, Howe GT, Olsen JE, Moritz T, van Mongtagu M, Junttila O, Boerjan W (2000) Molecular aspects of bud dormancy in trees. In: Jain SM, Minocha SC (eds) Molecular biology of woody plants, vol 1. Kluwer, Dordrecht, pp 89–134

    Google Scholar 

  • Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signalling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709. doi:10.1146/annurev.arplant.57.032905.105441

    PubMed  CAS  Google Scholar 

  • Ruttink T, Arend M, Morreel K, Storme V, Rombauts S, Fromm J, Bhalerao RP, Boerjan W, Rohde A (2007) A molecular timetable for apical bud formation and dormancy induction in poplar. Plant Cell 19:2370–2390. doi:10.1105/tpc.107.052811

    PubMed  CAS  Google Scholar 

  • Sarmiento G (1984) The ecology of neotropical savannas. Harvard University Press, Cambridge

    Google Scholar 

  • Satter RL, Galston AW (1973) Leaf movements: Rosetta stone of plant behaviour. Bioscience 23:407–416. doi:10.2307/1296540

    CAS  Google Scholar 

  • Satter RL, Sabins DD, Galston AW (1970a) Phytochrome controlled nyctinasty in Albizzia julibrissin. I. Anatomy and fine structure of the pulvinule. Am J Bot 57:374–381. doi:10.2307/2440864

    Google Scholar 

  • Satter RL, Marinoff P, Galston AW (1970b) Phytochrome controlled nyctinasty in Albizzia julibrissin. II. Potassium fluxes as a basis for leaflet movement. Am J Bot 57:916–926. doi:10.2307/2440989

    CAS  Google Scholar 

  • Satter RL, Applewhite PB, Kreis DJ, Galston AW (1973) Rhythmic leaflet movement in Albizzia julibrissin. Effects of electrolytes and temperature alteration. Plant Physiol 52:202–207. doi:10.1104/pp.52.3.202

    PubMed  Google Scholar 

  • Satter RL, Applewhite PB, Galston AW (1974a) Rhythmic potassium flux in Albizzia. Effect of aminophylline, cations, and inhibitors of respiration. Plant Physiol 54:280–285. doi:10.1104/pp.54.3.280

    PubMed  CAS  Google Scholar 

  • Satter RL, Geballe GT, Galston AW (1974b) Potassium flux and leaf movement in Samanea saman. I. Rhythmic movement. J Gen Physiol 64:413–430. doi:10.1085/jgp.64.4.413

    PubMed  CAS  Google Scholar 

  • Satter RL, Geballe GT, Applewhite PB, Galston AW (1974c) Potassium flux and leaf movement in Samanea saman. II. Phytochrome controlled movement. J Gen Physiol 64:424–431. doi:10.1085/jgp.64.4.431

    Google Scholar 

  • Satter RL, Schrempf M, Chaudri J, Galston AW (1977) Phytochrome and circadian clocks in Samanea. Rhythmic redistribution of potassium and chloride within the pulvinus during long dark periods. Plant Physiol 59:231–235. doi:10.1104/pp.59.2.231

    PubMed  CAS  Google Scholar 

  • Satter RL, Xu Y, DePass A (1987) Effects of temperature on H+-secretion and uptake by excised flexor cells during dark-induced closure of Samanea leaflets. Plant Physiol 85:850–855. doi:10.1104/pp.85.3.850

    PubMed  CAS  Google Scholar 

  • Schulze E-D, Lange OL, Evenari M, Kappen L, Buschbom U (1974) The role of air humidity and leaf temperature in controlling stomatal resistance of Prunus armeniaca L. under desert conditions. I. A simulation of the daily course of stomatal resistance. Oecologia 17:159–170. doi:10.1007/BF00346278

    Google Scholar 

  • Schulze E-D, Lange OL, Kappen L, Evenari M, Buschbom U (1975a) The role of air humidity and leaf temperature in controlling stomatal resistance of Prunus armeniaca under desert conditions. II. The significance of leaf water status and internal carbon dioxide concentration. Oecologia 18:219–233. doi:10.1007/BF00345424

    Google Scholar 

  • Schulze E-D, Lange OL, Evenari M, Kappen L, Buschbom U (1975b) The role of air humidity and leaf temperature in controlling stomatal resistance of Prunus armeniaca L. under desert condtions. III. The effect on water use efficiency. Oecologia 19:303–314

    Google Scholar 

  • Schweingruber FH (1988) Tree rings. Basics and applications of dendrochronology. Kluwer, Dordrecht

    Google Scholar 

  • Staiger D (2002) Circadian rhythms in Arabidopsis: time for nuclear proteins. Planta 214:334–344. doi:10.1007/s004250100662

    PubMed  CAS  Google Scholar 

  • Staiger D, Heintzen C (1999) The circadian system of Arabidopsis thaliana. Chronobiol Int 16:1–16. doi:10.3109/07420529908998708

    PubMed  CAS  Google Scholar 

  • Suh S, Moran N, Lee Y (2000) Blue light activates potassium-efflux channels in flexor cells from Samanea saman motor organs via two mechanisms. Plant Physiol 123:833–843. doi:10.1104/pp.123.3.833

    PubMed  CAS  Google Scholar 

  • Sutinen M-L (2007) Lipid changes during cold-acclimation and de-acclimation of herbaceous and woody species. In: Taulavuori E, Taulavuori K (eds) Physiology of northern plans under changing environment. Research Signpost, Kerala, pp 19–37

    Google Scholar 

  • Takata N, Saito S, Saito CT, Nanjo T, Shinohara K, Uemura M (2009) Molecular phylogeny and expression of poplar circadian clock genes, LHY1 and LHY2. New Phytol 181:808–819. doi:10.1111/j.1469-8137.2008.02714.x

    CAS  Google Scholar 

  • Taulavuori E, Lüttge U (2007) Membrane responses under stress in relation to seasonal environmental dynamics in northern ecosystems. In: Taulavuori E, Taulavuori K (eds) Physiology of northern plans under changing environment. Research Signpost, Kerala, pp 1–17

    Google Scholar 

  • Taulavuori K, Sarala M, Taulavuori E (2009) Growth responses to changing light environment. Prog Bot 71

  • Taylor JE, Whitelaw CA (2001) Signals in abscission. New Phytol 151:323–340. doi:10.1046/j.0028-646x.2001.00194.x

    CAS  Google Scholar 

  • Tenhunen JD, Lange OL, Braun M, Meyer A, Lösch R, Pereira JS (1980) Midday stomatal closure in Arbutus unedo leaves in a natural macchia under simulated habitat conditions in an environmental chamber. Oecologia 47:365–367. doi:10.1007/BF00398530

    Google Scholar 

  • Tenhunen JD, Lange OL, Braun M (1981) Midday stomatal closure in mediterranean type sclerophylls under simulated habitat conditions in an environmental chamber. II. Effect of the couple of leaf temperature and air humidity on gas exchange of Arbutus unedo and Quercus ilex. Oecologia 50:5–11. doi:10.1007/BF00378788

    Google Scholar 

  • Tenhunen JD, Lange OL, Gebel J, Beyschlag W, Weber JA (1984) Changes in photosynthetic capacity, carboxylation efficiency, and CO2-compensation point associated with midday stomatal closure and midday depression of CO2 exchange of leaves of Quercus suber. Planta 162:193–203. doi:10.1007/BF00397440

    CAS  Google Scholar 

  • Thomas B, Vince-Prue D (1997) Photoperiodism in plants. Academic Press, San Diego

    Google Scholar 

  • Verheyden A, Helle G, Schleser GH, Dehairs F, Beeckman H, Koedam N (2004a) Annual cyclicity in high-resolution stable carbon and oxygen isotope ratios in the wood of the mangrove tree Rhizophora mucronata. Plant Cell Environ 27:1525–1536. doi:10.1111/j.1365-3040.2004.01258.x

    Google Scholar 

  • Verheyden A, Kairo JG, Beeckman H, Koedam N (2004b) Growth rings, growth ring formation and age determination in the mangrove Rhizophora mucronata. Ann Bot (Lond) 94:59–66. doi:10.1093/aob/mch115

    Google Scholar 

  • Verheyden A, de Ridder F, Schmitz N, Beeckman H, Koedam N (2005) High-resolution time series of vessel density in Kenyan mangrove trees reveal a link with climate. New Phytol 167:425–435. doi:10.1111/j.1469-8137.2005.01415.x

    PubMed  Google Scholar 

  • Voytsekh O, Seitz SB, Iliev D, Mittag M (2008) Both subunits of the circadian RNA-binding protein CHLAMY1 can integrate temperature information. Plant Physiol 147:2179–2193. doi:10.1104/pp.108.118570

    PubMed  CAS  Google Scholar 

  • Weiser CJ (1970) Cold resistance and injury in woody plants. Science 169:1269–1278. doi:10.1126/science.169.3952.1269

    PubMed  Google Scholar 

  • Welling A, Palva ET (2006) Molecular control of cold acclimation in trees. Physiol Plant 127:167–181. doi:10.1111/j.1399-3054.2006.00672.x

    CAS  Google Scholar 

  • Welling A, Palva ET (2008) Involvement of CBF transcription factors in winter hardiness in birch. Plant Physiol 147:1199–1211. doi:10.1104/pp.108.117812

    PubMed  CAS  Google Scholar 

  • Welling A, Kaikuranta P, Rinne P (1997) Photoperiodic induction of dormancy and freezing tolerance in Betula pubescens: involvement of ABA and dehydrins. Physiol Plant 100:119–125. doi:10.1111/j.1399-3054.1997.tb03461.x

    CAS  Google Scholar 

  • Welling A, Moritz T, Palva ET, Junttila O (2002) Independent activation of cold acclimation by low temperature and short photoperiod in hybrid aspen. Plant Physiol 129:1633–1641. doi:10.1104/pp.003814

    PubMed  CAS  Google Scholar 

  • Welling A, Rinne P, Vihera-Aarnio A, Kontunen-Soppela S, Heino P, Palva ET (2004) Photoperiod and temperature differentially regulate the expression of two dehydrin genes during overwintering of birch (Betula pubescens Ehrh.). J Exp Bot 55:507–516. doi:10.1093/jxb/erh045

    Google Scholar 

  • Wilkins MB (1992) Circadian rhythms: their origin and control. New Phytol 121:347–375. doi:10.1111/j.1469-8137.1992.tb02936.x

    CAS  Google Scholar 

  • Wimmer R (2002) Wood anatomical features in tree rings as indicators of environmental change. Dendrochronologia 20:21–36. doi:10.1078/1125-7865-00005

    Google Scholar 

  • Woodcock DW (1989) Climate sensitivity of wood-anatomical features in a ring-porous oak (Quercus macrocarpa). Can J For Res 19:639–644. doi:10.1139/x89-100

    Google Scholar 

  • Worbes M (1988) Variety in structure of annual growth zones in Tabebuia barbata (E. Mey) Sandw., Bignoniaceae, a tropical tree species from Central Amazonian inundation forests. Dendrochronologia 6:71–89

    Google Scholar 

  • Worbes M (1989) Growth rings, increment and age of trees in inundation forests, savannas and a mountain forest in the Neotropics. IAWA J 10:109–122

    Google Scholar 

  • Worbes M (1999) Annual growth rings, rainfall-dependent growth and long-term growth patterns of tropical trees from the Caparo Forest Reserve in Venezuela. J Ecol 87:391–403. doi:10.1046/j.1365-2745.1999.00361.x

    Google Scholar 

  • Wright JS (1991) Seasonal drought and the phenology of understory shrubs in a tropical moist forest. Ecology 72:1643–1657. doi:10.2307/1940964

    Google Scholar 

  • Wright JS (1996) Phenological responses to seasonality in tropical forest plants. In: Mulkey SS, Chazdon RC, Smith AP (eds) Tropical forest plant ecophysiology. Chapman and Hall, New York, pp 440–460

    Google Scholar 

  • Yasue K, Funada R, Kobayashi O, Ohtani J (2000) The effects of tracheid dimensions on variations in maximum density of Picea glehnii and relationships of climatic factors. Trees (Berl) 14:223–229

    Google Scholar 

  • Yeang H-Y (2007a) Synchronous flowering of the rubber tree (Hevea brasiliensis) induced by high solar radiation intensity. New Phytol 175:283–289. doi:10.1111/j.1469-8137.2007.02089.x

    PubMed  Google Scholar 

  • Yeang H-Y (2007b) The sunshine-mediated trigger of synchronous flowering in the tropics: the rubber tree as a study model. New Phytol 176:730–735. doi:10.1111/j.1469-8137.2007.02258.x

    PubMed  Google Scholar 

  • Zucker Lowen C, Satter RL (1989) Light-promoted changes in apoplastic K+ activity in the Samanea saman pulvinus, monitored with liquid membrane microelectrodes. Planta 179:421–427. doi:10.1007/BF00397580

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Lüttge.

Additional information

Communicated by R. Guy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lüttge, U., Hertel, B. Diurnal and annual rhythms in trees. Trees 23, 683–700 (2009). https://doi.org/10.1007/s00468-009-0324-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-009-0324-1

Keywords

Navigation