Skip to main content
Log in

Provenance variation in tolerance of Melaleuca cajuputi trees to interactive effects of aluminum and salt

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

A future rise in sea level will expand areas of salt-affected acid sulfate soil, calling for studies on plant tolerance to combined aluminum (Al) and salt (NaCl) stress. We investigated random amplified polymorphic DNA (RAPD) profiles and tolerance to Al and NaCl alone and in combination in 14 Melaleuca cajuputi Powell provenances. Two-month-old seedlings were grown with or without 10 mM Al and/or 50 mM NaCl at pH 3.8 for 3 months. Plant growth was reduced mostly by combined Al and NaCl stress and then by NaCl and least by Al. Moreover, Al enhanced the effect of NaCl on growth and vice versa. There were significant differences in plant growth among provenances under all treatments; however, positive relationships were found among Al tolerance, NaCl tolerance, and combined Al and NaCl tolerance. Provenance variation in stress tolerance increases with the increasing levels of stress effect. Furthermore, NaCl tolerance tended to have a positive relationship with osmotic potential. Leaf sap K concentration was decreased by NaCl and increased by Al; however, provenances that were more tolerant to NaCl tended to have lower K concentrations. RAPD analysis also revealed genetic variation among provenances. These results suggest that the low tolerance to combined Al and NaCl stress in M. cajuputi is largely due to low tolerance to NaCl and the effect of interaction between Al and NaCl. Provenance variation in stress tolerance was significant and could be partly explained by the variation in genetic material and the ability of plants to reduce ion excess stress in their shoots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Asian Development Bank (1994) Climate change in Asia: Vietnam country report. Asian Development Bank, Manila

    Google Scholar 

  • Bell DT (1999) Australian trees for the rehabilitation of waterlogged and salinity-damaged landscapes. Aust J Bot 47:697–716. doi:10.1071/BT96110

    Article  Google Scholar 

  • Blamey RPC, Asher CJ, Edwards DC, Kerven GL (1993) In vitro evidence of aluminum effects on solution movement through root cell walls. J Plant Nutr 16:555–562. doi:10.1080/01904169309364556

    Article  CAS  Google Scholar 

  • Blancaflor EB, Jones DL, Gilroy S (1998) Alterations in the cytoskeleton accompanies aluminum-induced growth inhibition and morphological changes in primary roots of maize. Plant Physiol 118:159–172. doi:10.1104/pp.118.1.159

    Article  PubMed  CAS  Google Scholar 

  • Carter JL, Colmer TD, Veneklaas EJ (2005) Variable tolerance of wetland tree species to combined salinity and waterlogging is related to regulation of ion uptake and production of organic solutes. New Phytol 169:123–134. doi:10.1111/j.1469-8137.2005.01552.x

    Article  Google Scholar 

  • Chen THH, Murata N (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5:250–275. doi:10.1016/S1369-5266(02)00255-8

    Article  PubMed  CAS  Google Scholar 

  • Doran JC, Gunn BV (1994) Exploring the genetic resources of tropical melaleucas. Forest Genetic Resources No 22 FAO, Rome

    Google Scholar 

  • Ezaki B, Gardner RC, Ezaki Y, Matsumoto H (2000) Expression of aluminum-induced genes in transgenic Arabidopsis plants can ameliorate aluminum stress and/or oxidative stress. Plant Physiol 122:657–665. doi:10.1104/pp.122.3.657

    Article  PubMed  CAS  Google Scholar 

  • Flower TJ, Troke PF, Yeo AJ (1977) The mechanisms of salt tolerance in halophytes. Annu Rev Plant Physiol 28:89–121. doi:10.1146/annurev.pp.28.060177.000513

    Article  Google Scholar 

  • Godbold DL, Jentschke G (1998) Aluminium accumulation in root cell walls coincides with inhibition of root growth but not with inhibition of magnesium uptake in Norway spruce. Physiol Plant 102:553–560. doi:10.1034/j.1399-3054.1998.1020410.x

    Article  CAS  Google Scholar 

  • Hussain TM, Chandrasekhar T, Hazara M, Sultan Z, Saleh BK, Gopal GR (2008) Recent advances in salt stress biology—a review. Biotechnol Mol Biol Rev 3:8–13

    Google Scholar 

  • Kinraide TB, Parker DR (1990) Apparent phytotoxicity of mononuclear hydroxyl aluminum to four dicotyledonous species. Plant Physiol 79:283–288. doi:10.1111/j.1399-3054.1990.tb06743.x

    Article  CAS  Google Scholar 

  • Kinraide TB, Ryan PR, Kochain LV (1992) Interactive effects of Al3+, H+, and other cations on root elongation considered in terms of cell-surface electrical potential. Plant Physiol 99:1461–1468

    Article  PubMed  CAS  Google Scholar 

  • Krauss KW, Chambers JL, Allen JA, Soileau DM Jr, DeBosier AS (2000) Growth and nutrition of bald cypress families planted under varying salinity regimes in Louisiana, USA. J Coast Res 16:153–163

    Google Scholar 

  • McCann MC, Shi J, Roberts K, Carpita NC (1994) Changes in pectin structure and localization during the growth of unadapted and NaCl-adapted tobacco cells. Plant J 5:773–785. doi:10.1046/j.1365-313X.1994.5060773.x

    Article  CAS  Google Scholar 

  • Naidu BP, Paleg LG, Jones GP (2000) Accumulation of proline analogues and adaptation of Melaleuca species to diverse environments in Australia. Aust J Bot 48:611–620. doi:10.1071/BT99059

    Article  CAS  Google Scholar 

  • Neumann PM, van Volkenburgh E, Clelamd RE (1988) Salinity stress inhibits bean leaf expansion by reducing turgor, not wall extensibility. Plant Physiol 88:233–237

    Article  PubMed  CAS  Google Scholar 

  • Nguyen NT (1999) The results from Melaleuca provenance trials in Mekong delta, Vietnam. Inform Sci Technol Econ Agric Rural Dev 7:20–24 (in Vietnamese)

    Google Scholar 

  • Nguyen NT, Nakabayashi K, Thompson J, Fujita K (2003a) Role of exudation of organic acids and phosphate in aluminum tolerance of four tropical woody species. Tree Physiol 23:1041–1050

    PubMed  CAS  Google Scholar 

  • Nguyen TN, Mohapatra PK, Fujita K (2003b) Leaf necrosis is a visual symptom of the shift from growth stimulation to inhibition effect of Al in Eucalyptus camaldulensis. Plant Sci 165:147–157. doi:10.1016/S0168-9452(03)00153-5

    Article  CAS  Google Scholar 

  • Nguyen TN, Morhaieb REA, Saneoka H, Fujita K (2004) RAPD markers associated with salt tolerance in Acacia auriculiformis and Acacia mangium. Plant Sci 167:797–805. doi:10.1016/j.plantsci.2004.05.016

    Article  CAS  Google Scholar 

  • Nguyen TN, Dudzinski MJ, Mohapatra PK, Fujita K (2005a) Distribution of accumulated aluminum and changes in cell wall polysaccharides in Eucalyptus camaldulensis and Melaleuca cajuputi under aluminum stress. Soil Sci Plant Nutr 51:737–740. doi:10.1111/j.1747-0765.2005.tb00103.x

    Article  CAS  Google Scholar 

  • Nguyen TN, Ngo DH, Fujita K (2005b) Iron enhances aluminum-induced leaf necrosis and plant growth inhibition in Eucalyptus camaldulensis. Plant Soil 277:139–152. doi:10.1007/s11104-005-6516-6

    Article  CAS  Google Scholar 

  • Nicholls RJ, Wong PP, Burkett VR, Codignotto JO, Hay JE, McLean RF, Ragoonaden S, Woodroffe CD (2007) Coastal systems and low-lying areas. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts. Adaptation and vulnerability. Contribution of Working Group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 315–356

    Google Scholar 

  • Niknam SR, McComb J (2000) Salt tolerance screening of selected Australian woody species—a review. For Ecol Manage 139:1–19

    Article  Google Scholar 

  • Okubo S, Takeuchi K, Chakranon B, Jongskul A (2003) Land characteristics and plant resources in relation to agricultural land-use planning in a humid tropical strand plain, southeastern Thailand. Landsc Urban Plan 65:133–148. doi:10.1016/S0169-2046(03)00011-2

    Article  Google Scholar 

  • Osaki M, Watanabe T, Ishizawa T, Nilnond C, Nuyim T, Shinano T, Urayama M, Tuah SJ (2003) Nutritional characteristics of the leaves of native plants growing in adverse soils of humid tropical lowlands. Plant Foods Hum Nutr 58:93–115. doi:10.1023/A:1024415203690

    Article  PubMed  CAS  Google Scholar 

  • Pang CH, Wang BS (2008) Oxidative stress and salt tolerance in plants. In: Lüttge U, Beyschlag W, Murata J (eds) Progress in Botany, vol 69. Springer, Berlin, pp 231–245

    Chapter  Google Scholar 

  • Pengnoo A, Hashidoko Y, Onthong J, Gimsanguan S, Sae-ong M, Shinano T, Watanabe T, Osaki M (2007) Screening of phosphate-solubilizing microorganisms in rhizosphere and rhizoplane of adverse soil-adapting plants in Southern Thailand. Tropics 16:1–7. doi:10.3759/tropics.16.1

    Article  Google Scholar 

  • Richards KD, Schott EJ, Sharma YK, Davis KR, Gardner RC (1998) Aluminum induces oxidative stress genes in Arabidopsis thaliana. Plant Physiol 116:409–418. doi:10.1104/pp.116.1.409

    Article  PubMed  CAS  Google Scholar 

  • Sam DD, Binh NN (1999) Evaluation of potential use of forest land in the Mekong river delta. Agriculture publishing house, Hanoi

    Google Scholar 

  • Scheepers D, Eloy MD, Briquet M (1997) Use of RAPD patterns for clone verification and in studying provenance relationships in Norway spruce (Picea abies). Theor Appl Genet 94:480–485. doi:10.1007/s001220050440

    Article  CAS  Google Scholar 

  • Schiliro E, Predieri S, Bertaccini AC (2001) Use of Random Amplified Polymorphic DNA analysis to detect genetic variation in Pyrus species. Plant Mol Biol Rep 19:271a–271h. doi:10.1007/BF02772900

    Article  Google Scholar 

  • Schmohl N, Horst WJ (2000) Cell wall pectin content modulates aluminium sensitivity of Zea mays (L.) cells grown in suspension culture. Plant Cell Environ 23:735–742. doi:10.1046/j.1365-3040.2000.00591.x

    Article  CAS  Google Scholar 

  • Schmohl N, Pilling J, Fisahn J, Horst WJ (2000) Pectin methylesterase modulates aluminium sensitivity in Zea mays and Solanum tuberosum. Physiol Plant 109:419–427. doi:10.1034/j.1399-3054.2000.100408.x

    Article  CAS  Google Scholar 

  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Asako K, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi S, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292. doi:10.1046/j.1365-313X.2002.01359.x

    Article  PubMed  CAS  Google Scholar 

  • Shedletzky E, Shmuel M, Trainin T, Kalman S, Delmer D (1992) Cell wall structure in cells adapted to growth on the cellulose-synthesis inhibitor 2, 6-dichlorobenzonitile. Plant Physiol 100:120–130

    Article  PubMed  CAS  Google Scholar 

  • Sivaguru M, Balu_ka F, Volkmann D, Felle HH, Horst WJ (1999) Impacts of aluminium on the cytoskeleton of the maize root apex. Short-term effects on the distal part of the transition zone. Plant Physiol 119:1073–1082. doi:10.1104/pp.119.3.1073

    Article  PubMed  CAS  Google Scholar 

  • van der Moezel PG, Pearce-Pinto GVN, Bell DT (1991) Screening for salt and waterlogging tolerance in Eucalyptus and Melaleuca species. For Ecol Manage 40:27–37

    Article  Google Scholar 

  • White I (2002) Water management in the Mekong delta: changes, conflicts and opportunities, technical documents in hydrology, no. 61. UNESCO, Paris

    Google Scholar 

  • Williams ER, Matheson AC (1994) Experimental design and analysis for use in tree improvement. CSIRO-ACIAR, Melbourne

    Google Scholar 

  • Yamamoto Y, Hachiya A, Matsumoto H (1997) Oxidative damage to membranes by a combination of aluminum and iron in suspension-cultured tobacco cells. Plant Cell Physiol 38:1333–1339

    CAS  Google Scholar 

  • Yamamoto Y, Kobayashi Y, Devi SR, Rikiishi S, Matsumoto H (2002) Aluminum toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells. Plant Physiol 128:63–72. doi:10.1104/pp.010417

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273. doi:10.1146/annurev.arplant.53.091401.143329

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kounosuke Fujita.

Additional information

Communicated by S. Linder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, N.T., Saneoka, H., Suwa, R. et al. Provenance variation in tolerance of Melaleuca cajuputi trees to interactive effects of aluminum and salt. Trees 23, 649–664 (2009). https://doi.org/10.1007/s00468-008-0309-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-008-0309-5

Keywords

Navigation