Nitrogen availability patterns in white-sand vegetations of Central Brazilian Amazon

Abstract

Addressing spatial variability in nitrogen (N) availability in the Central Brazilian Amazon, we hypothesized that N availability varies among white-sand vegetation types (campina and campinarana) and lowland tropical forests (dense terra-firme forests) in the Central Brazilian Amazon, under the same climate conditions. Accordingly, we measured soil and foliar N concentration and N isotope ratios (δ15N) throughout the campina-campinarana transect and compared to published dense terra-firme forest results. There were no differences between white-sand vegetation types in regard to soil N concentration, C:N ratio and δ15N across the transect. Both white-sand vegetation types showed very low foliar N concentrations and elevated foliar C:N ratios, and no significant difference between site types was observed. Foliar δ15N was depleted, varying from −9.6 to 1.6‰ in the white-sand vegetations. The legume Aldina heterophylla had the highest average δ15N values (−1.5‰) as well as the highest foliar N concentration (2.1%) while the non-legume species had more depleted δ15N values and the average foliar N concentrations varied from 0.9 to 1.5% among them. Despite the high variation in foliar δ15N among plants, a significant and gradual 15N-enrichment in foliar isotopic signatures throughout the campina–campinarana transect was observed. Individual plants growing in the campinarana were significantly enriched in 15N compared to those in campina. In the white-sand N-limited ecosystems, the differentiation of N use seems to be a major cause of variations observed in foliar δ15N values throughout the campina–campinarana transect.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Amundson R, Austin AT, Schuur EAG, Yoo K, Matzek V, Kendall C, Uebersax A, Brenner D, Baisden WT (2003) Global patterns of the isotopic composition of soil and plant nitrogen. Global Biogeochem Cycles 17(1):1031. doi:10.1029/2002GB001903

    Article  CAS  Google Scholar 

  2. Anderson AB (1981) White-sand vegetation of Brazilian Amazonia. Biotropica 13(3):199–210. doi:10.2307/2388125

    Article  Google Scholar 

  3. Asada T, Warner BZ, Aravena R (2002) Nitrogen isotope signature variability in plant species from open peatland. Aquat Bot 82:297–307. doi:10.1016/j.aquabot.2005.05.005

    Article  CAS  Google Scholar 

  4. Austin AT, Vitousek PM (1998) Nutrient dynamics on a precipitation gradient in Hawai’i. Oecol 113(4):519–529. doi:10.1007/s004420050405

    Article  Google Scholar 

  5. Braga PIS (1979) Subdivisão fitogeográfica, tipos de vegetação, conservação e inventário florístico da Floresta Amazônica. Acta Amazon 9(4):53–80

    Google Scholar 

  6. Bustamante MMC, Martinelli LA, Silva DA, Camargo PB, Klink CA, Domingues TF, Santos RV (2004) 15N Natural Abundance in woody plants and soils of central Brazilian savannas (Cerrado). Ecol Appl 14(4):200–213. doi:10.1890/01-6013

    Article  Google Scholar 

  7. Chapin FS, Vitousek PM, Van Cleve K (1986) The nature of mineral limitation in plant communities. Am Nat 127:48–58. doi:10.1086/284466

    Article  Google Scholar 

  8. Cuevas E, Medina E (1986) Nutrient dynamics within Amazonian forests. I. Nutrient flux in fine litter fall and efficiency of nutrient utilization. Oecol 68:466–472

    Article  Google Scholar 

  9. Cuevas E, Medina E (1988) Nutrient dynamics within Amazonian forest II-fine root growth, nutrient availability and leaf litter decomposition. Oecol 76:222–235. doi:10.1007/BF00379956

    Article  Google Scholar 

  10. Davidson EA, Carvalho CJR, Figueira AM, Ishida FY, Ometto JPHB, Nardoto GB, Saba RT, Hayashi SN, Leal EC, Vieira ICG, Martinelli LA (2007) Recuperation of nitrogen cycling in Amazonian forests following agricultural abandonment. Nature 447:995–998. doi:10.1038/nature05900

    PubMed  Article  CAS  Google Scholar 

  11. Evans RD (2001) Physiological mechanisms influencing plant nitrogen isotope composition. Trends Plant Sci 6(3):121–126. doi:10.1016/S1360-1385(01)01889-1

    PubMed  Article  CAS  Google Scholar 

  12. Handley LL, Odee D, Scrimgeour CM (1994) Delta-N-15 and delta-C-13 patterns in savanna vegetation—dependence of water availability and disturbance. Funct Ecol 8(3):306–314. doi:10.2307/2389823

    Article  Google Scholar 

  13. Handley LL, Austin AT, Robinson D, Scrimgeour CM, Raven JA, Heaton THE, Schmidt S, Stewart GR (1999) The N-15 natural abundance (delta N-15) of ecosystem samples reflects measures of water availability. Aust J Plant Physiol 26(2):185–199

    Article  Google Scholar 

  14. Hättenschwiler S, Vitousek P (2000) The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends Ecol Evol 15(6):238–243. doi:10.1016/S0169-5347(00)01861-9

    PubMed  Article  Google Scholar 

  15. He XH, Critchley C, Bledsoe C (2003) Nitrogen transfer within and between plants through commom mycorrhizal networks (CMNs). Crit Rev Plant Sci 22(6):531–567. doi:10.1080/713608315

    Article  Google Scholar 

  16. Hobbie EA, Jumpponen A, Trappe J (2005) Foliar and fungal 15N:14N ratios reflect development of micorrhizae and nitrogen supply during primary succession: testing analytical models. Oecol 146:258–268. doi:10.1007/s00442-005-0208-z

    Article  Google Scholar 

  17. Hobbie AE, Colpaert JV (2003) Nitrogen availability and colonization by mycorrhizal fungi correlate with nitrogen isotope patterns in plants. New Phytol 157:115–126. doi:10.1046/j.1469-8137.2003.00657.x

    Article  CAS  Google Scholar 

  18. Hobbie EA, Macko SA, Williams M (2000) Correlations between foliar δ15N and nitrogen concentrations may indicate plant–mycorrhizal interactions. Oecol 122:273–283. doi:10.1007/PL00008856

    Article  Google Scholar 

  19. Högberg P (1997) 15 N natural abundance in soil-plant systems. New Phytol 137(2):179–203. doi:10.1046/j.1469-8137.1997.00808.x

    Article  Google Scholar 

  20. Horbe AMC, Horbe MA, Suguio K (2004) Tropical Spodosols in northeastern Amazonas State, Brazil. Geoderma 119:55–68. doi:10.1016/S0016-7061(03)00233-7

    Article  CAS  Google Scholar 

  21. Houlton BZ, Sigman DM, Hedin LO (2006) Isotopic evidence for large gaseous nitrogen losses from tropical rainforests. Proc Natl Acad Sci USA 103:8745–8750. doi:10.1073/pnas.0510185103

    PubMed  Article  CAS  Google Scholar 

  22. Janzen DH (1974) Tropical Blackwater Rivers, Animals, and Mast Fruiting by the Dipterocarpaceae. Biotropica 6(2):69–103. doi:10.2307/2989823

    Article  Google Scholar 

  23. Jordan CF (1985a) Soils of Amazon Rain Forest. In: Prance GT; Lovejoy, T. E. Amazonia, vol 5. Pergamon Press, New York, pp 83–93

    Google Scholar 

  24. Jordan CF (1985b) Differences in ecosystem characteristics along environmental gradients. In: Jordan CF (ed) Nutrient Cycling in Tropical Forest Ecosystems. Wiley, Chichester, pp 45–71

    Google Scholar 

  25. Klinge H, Medina E (1979) Rio Negro caatingas and campinas.Amazonas states of Venezuela and Brazil. In: Spetch RL (ed) Heathland and related shrublands. Ecosystems of the World 9A. Elsevier, Amsterdam, pp 483–487

    Google Scholar 

  26. Luizão FJ (1995) Ecological studies in contrasting forest types in Central Amazônia. PhD dissertation, University of Stirling, Scotland, UK, 288p

  27. Luizão FJ, Luizão RCC, Proctor J (2007a) Soil acidity and nutrient deficiency in central Amazonian heath forest soils. Plant Ecol 192:209–224. doi:10.1007/s11258-007-9317-6

    Article  Google Scholar 

  28. Luizão RCC (1994) Soil biological studies in contrasting types of vegetation in Central Amazonian raiforests. PhD dissertation, University of Stirling, Scotland, UK, p 204

  29. Luizão RCC, Luizão FJ, Paiva RQ, Monteiro TF, Sousa LS, Kruijt B (2004) Variation of carbon and nitrogen cycling processes along a topographic gradient in a central Amazonian forest. Glob Change Biol 10:592–600. doi:10.1111/j.1529-8817.2003.00757.x

    Article  Google Scholar 

  30. Luizão RCC, Luizão FJ, Proctor J (2007b) Fine root growth and nutrient release in decomposing leaf litter in three contrasting vegetation types in central Amazônia. Plant Ecol 192:225–236. doi:10.1007/s11258-007-9307-8

    Article  Google Scholar 

  31. Martinelli LA, Piccollo MC, Townsend AR, Vitousek PM, Cuevas E, McDowell W, Robertson GP, Santos OC, Tresender K (1999) Nitrogen stable isotopic composition of leaves and soil: tropical versus temperate forests. Biogeochemistry 46:45–65

    CAS  Google Scholar 

  32. Medina E, García V, Cuevas E (1990) Sclerophylly and oligotrophic environments: relationsghips between leaf structure, mineral nutrient concentration, and drought resistance in tropical rain forests of the upper río Negro region. Biotropica 22(1):51–64. doi:10.2307/2388719

    Article  Google Scholar 

  33. Medina E, Cuevas E (1994) Mineral Nutrition: humid tropical forests. Prog Bot 55:115–127

    Google Scholar 

  34. Medina E, Cuevas E (2000) Eficiencia de utilización de nutrientes por las plantas leñosas: eco-fisiología de bosques de San Carlos de Río Negro. Sci Guaianae 11:51–70

    Google Scholar 

  35. Michelsen A, Schmidt IK, Jonasson S, Quarmby C, Sleep D (1996) Leaf 15 N abundance of subartic plants provides field evidence that ericoid, ecomycorrhizal and arbuscular mycorrhizal species access different sources of soil nitrogen. Oecologia 105:53–63. doi:10.1007/BF00328791

    Article  Google Scholar 

  36. Moreira FMS, Silva MF, Faria SM (1992) Occurrence of nodulation in legume species in the Amazon region of Brazil. New Phytol 121:563–570. doi:10.1111/j.1469-8137.1992.tb01126.x

    Article  Google Scholar 

  37. Moyersoen B, Becker P, Alexander IJ (2001) Are ectomycorrhizas more abundant than arbuscular mycorrhizas in tropical heath forests? New Phytol 150(3):591–599. doi:10.1046/j.1469-8137.2001.00125.x

    Article  Google Scholar 

  38. Nadelhoffer K, Shaver G, Fry B, Giblin A, Johnson L, McKane R (1996) N-15 natural abundances and N use by tundra plants. Oecol 107:386–394. doi:10.1007/BF00328456

    Article  Google Scholar 

  39. Nardoto GB, Ometto JPHB, Ehleringer JR, Higuchi N, Bustamante MMC, Martinelli LA (2008) Understanding the influences of spatial patterns on the N availability within the Brazilian Amazon Forest. Ecosystems (NY, Print) 11:1234–1246. doi:10.1007/s10021-008-9189-1

    Article  CAS  Google Scholar 

  40. Ometto JP, Ehleringer JR, Domingues TF, Berry JA, Ishida FY, Mazzi E, Higuchi N, Flanagan LB, Nardoto GB, Martinelli LA (2006) The stable carbon isotope and nitrogen isotopic composition of vegetation in tropical forests of the Amazon region, Brazil. Biogeochemistry 79(1):251–274. doi:10.1007/s10533-006-9008-8

    Article  CAS  Google Scholar 

  41. Pires JM, Prance GT (1985) The vegetation types of Brazilian Amazon. In: Prance GT, Lovejoy TE (eds) Amazonia. Pergamon Press, Oxford

    Google Scholar 

  42. Prance GT, Schubart HOR (1978) Notes on the vegetation of Amazonia I. A preliminary note on the origin of the open white sand campinas of the lower Rio Negro. Brittonia 30(1):60–63. doi:10.2307/2806458

    Article  Google Scholar 

  43. Proctor J (1999) Heath Forests and Acid Soils. Bot J Scotl 51(1):1–14

    Article  Google Scholar 

  44. Richards PW (1996) The tropical rain forest: an ecological study, 2nd edn. Cambridge University Press, London

    Google Scholar 

  45. Robinson D (2001) δ15N as an integrator of the nitrogen cycle. Trends Ecol Evol 16:153–162. doi:10.1016/S0169-5347(00)02098-X

    PubMed  Article  Google Scholar 

  46. Schmidt S, Handley LL, Sangtiean T (2006) Effects of nitrogen source and ectomycorrhizal association on growth and delta N-15 of two subtropical Eucalyptus species from contrasting ecosystems. Funct Plant Biol 33:367–379. doi:10.1071/FP05260

    Article  CAS  Google Scholar 

  47. Schulze ED, Chapin FSI, Gebauer G (1994) Nitrogen nutrition and isotope differences among life forms at the northern treeline of Alaska. Oecol 100:406–412. doi:10.1007/BF00317862

    Article  Google Scholar 

  48. Schuur EAG, Matson PA (2001) Net primary productivity and nutrient cycling across a mesic to wet precipitation gradient in Hawaiian montane forest. Oecol 128:431–442. doi:10.1007/s004420100671

    Article  Google Scholar 

  49. Silver WL, Neff J, McGroddy M, Veldkamp E, Keller M, Cosme R (2000) Effects of soil texture on belowground carbon and nutrient storage in a lowland Amazonian forest ecosystem. Ecosystems (NY, Print) 3(2):193–209. doi:10.1007/s100210000019

    Article  CAS  Google Scholar 

  50. Singer R, Araújo IJS (1979) Litter decomposition and ectomycorrhiza in Amazonian forests l. A comparison of litter decomposing and ectomycorrhizal Basidiomycetes in latosol-terra-firme rain forest and white podzol campinarana. Acta Amazon 9(1):25–41

    Google Scholar 

  51. Sombroek W (2001) Spatial and temporal patterns of Amazon rainfall: consequences for the planning of agricultural occupation and the protection of primary forests. Ambio 30(7):388–396. doi:10.1639/0044-7447(2001)030[0388:SATPOA]2.0.CO;2

    PubMed  CAS  Google Scholar 

  52. StatSoft, Inc. 2004. STATISTICA data analysis software system, version 6. URL: http://www.statsoft.com

  53. Vitousek P (1982) Nutrient cycling and nutrient use efficiency. Am Nat 119(4):553–572. doi:10.1086/283931

    Article  Google Scholar 

  54. Vitousek PM (1984) Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology 65(1):285–298. doi:10.2307/1939481

    Article  CAS  Google Scholar 

  55. Vitousek PM, Sanford RL (1986) Nutrient Cycling in Moist Tropical Forest. Annu Rev Ecol Syst 17:137–167. doi:10.1146/annurev.es.17.110186.001033

    Article  Google Scholar 

  56. Whitmore TC (1984) Tropical rain forests of the Far East, 2nd edn. Clarendon Press, Oxford

    Google Scholar 

Download references

Acknowledgments

We wish to thank the Instituto Nacional de Pesquisas da Amazônia (INPA) in Manaus for logistical support; M. A. Perez and F. Fracassi (CENA/USP) for technical lab support; and the field auxiliaries for their contributions in the field. Sílvia Mardegan had a fellowship from the “Programa de Pós-graduação em Ecologia—INPA” (CNPq, Brazil) and this research was supported by grants from CNPq (Project PPI 2—3105).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sílvia Fernanda Mardegan.

Additional information

Communicated by J. Major.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mardegan, S.F., Nardoto, G.B., Higuchi, N. et al. Nitrogen availability patterns in white-sand vegetations of Central Brazilian Amazon. Trees 23, 479–488 (2009). https://doi.org/10.1007/s00468-008-0293-9

Download citation

Keywords

  • Nitrogen stable isotopes
  • Nitrogen availability
  • White-sand vegetation
  • Campina
  • Campinarana