Skip to main content
Log in

Relationships of photosynthetic capacity to PSII efficiency and to photochemical reflectance index of Pinus taiwanensis through different seasons at high and low elevations of sub-tropical Taiwan

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

We investigated the relationships of photosynthetic capacity (P nsat, near light-saturated net photosynthetic rate measured at 1,200 μmol m−2 s−1 PPFD) to photosystem II efficiency (F v/F m) and to photochemical reflectance index [PRI = (R 531 − R 570)/(R 531 + R 570)] of Pinus taiwanensis Hay. needles at high (2,600 m a.s.l) and low-elevation (800 m a.s.l) sites through different seasons. Results indicate that at high-elevation site, P nsat, F v/F m and PRI (both measured at predawn) paralleled in general with the air temperature. On the coolest measuring day with the minimum air temperature dropping to −2°C, P nsat could decrease to ca. 15% of its highest value, which was measured in autumn. At low-elevation site, with the minimum air temperature of 10–12°C in cooler season and almost no seasonal variation of F v/F m, P nsat dropped to ca. 65% of its highest value and PRI decreased ca. 0.02 in winter. Even though seasonal variation of P nsat was affected by many factors, it was still closely related to PRI based on statistical analyses using data from both sites, through different seasons. On the contrary, seasonal variation of F v/F m of P. taiwanensis needles was influenced mainly by low temperature at high elevation. Therefore, the correlation of P nsat − F v/F m was lower than that of P nsat − PRI when data combined from both high- and low-elevation sites were analyzed. It is concluded that predawn PRI could be used as an indicator to estimate the seasonal potential of photosynthetic capacity of P. taiwanensis grown at low- and high-elevations of sub-tropical Taiwan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams WWIII, Demmig-Adams B, Rosenstiel TN, Ebbert V (2001) Dependence of photosynthesis and energy dissipation activity upon growth form and light environment during the winter. Photosynth Res 67:51–62. doi:10.1023/A:1010688528773

    Article  PubMed  CAS  Google Scholar 

  • Adams WWIII, Zarter RC, Ebbert V, Demmig-Adams B (2004) Photoprotective strategies of overwintering evergreens. Bioscience 54:41–49. doi:10.1641/0006-3568(2004)054[0041:PSOOE]2.0.CO;2

    Article  Google Scholar 

  • Alberte RS, McClure PR, Thornber JP (1976) Photosynthesis in trees. Plant Physiol 58:341–344

    Article  PubMed  CAS  Google Scholar 

  • Arnon DJ (1949) Copper enzyme in isolated chloroplasts polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  PubMed  CAS  Google Scholar 

  • Baker NR (1994) Chilling stress and photosynthesis. In: Foyer CH, Mullineaux PM (eds) Cause of photooxidative stress and amelioration of defense systems in plants. CRC Press, Boca Raton, pp 127–154

    Google Scholar 

  • Barker DH, Adams WWIII, Demmig-Adams B, Logan BA, Verhoeven AS, Smith SD (2002) Nocturnally retained zeaxanthin does not remain engaged in a state primed for energy dissipation during the summer in two Yucca species growing in the Mojave Desert. Plant Cell Environ 25:95–103. doi:10.1046/j.0016-8025.2001.00803.x

    Article  CAS  Google Scholar 

  • Berry JA, Downton WJS (1982) Environmental regulation of photosynthesis. In: Govindjee (ed) Photosynthesis, vol. II. Academic Press, London, pp 263–343

  • Blennow K, Lang ARG, Dunne P, Ball MC (1998) Cold-induced photoinhibition and growth of seedling snow gum (Eucalyptus pauciflora) under differing temperature and radiation regimes in fragmented forests. Plant Cell Environ 21:407–416. doi:10.1046/j.1365-3040.1998.00291.x

    Article  Google Scholar 

  • Chaves MM, Pereira JS, Maroco J, Rodrigues ML, Ricardo CPP, Osorio ML, Carvalho I, Faria T, Pinheiro C (2002) How plants cope with water stress in the field? Photosynthesis and growth. Ann Bot (Lond) 89:907–916. doi:10.1093/aob/mcf105

    Article  CAS  Google Scholar 

  • Chen LS, Cheng L (2003) Both xanthophyll cycle-dependent thermal dissipation and the antioxidant system are up-regulated in grape (Vitis labrusca L. cv. Concord) leaves in response to N limitation. J Exp Bot 54:2165–2175. doi:10.1093/jxb/erg220

    Article  PubMed  CAS  Google Scholar 

  • Close DC, Beadle CL, Hovenden MJ (2001) Cold-induced photoinhibition and foliar pigment dynamics of Eucalyptus nitens seedlings during establishment. Aust J Plant Physiol 28:1133–1141

    CAS  Google Scholar 

  • Demmig B, Winter K, Krüger A, Czygan FC (1988) Zeaxanthin and the heat dissipation of excess light energy in Nerium oleander exposed to a combination of high light and water stress. Plant Physiol 87:17–24

    Article  PubMed  CAS  Google Scholar 

  • Demmig-Adams B, Adams WWIII (1996) The role of xanthophylls cycle carotenoids in the protection of photosynthesis. Trends Plant Sci 1:21–26. doi:10.1016/S1360-1385(96)80019-7

    Article  Google Scholar 

  • Friedrech JW, Huffaker RC (1980) Photosynthesis, leaf resistances, and ribulose 1, 5-biphosphate carboxylase degradation in senescing barley leaves. Plant Physiol 65:1103–1107

    Article  Google Scholar 

  • Gamon JA, Peñuelas J, Field CB (1992) A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens Environ 41:35–44. doi:10.1016/0034-4257(92)90059-S

    Article  Google Scholar 

  • Gamon JA, Filella I, Peñuelas J (1993) The dynamic 531-nanometer reflectance signal: a survey of twenty angiosperm species. Curr Topics Plant Physiol 8:127–177

    Google Scholar 

  • Gamon JA, Field CB, Fredeen AL, Thayer S (2001) Assessing photosynthetic downregulation in sunflower stands with an optically-based model. Photosynth Res 67:113–125. doi:10.1023/A:1010677605091

    Article  PubMed  CAS  Google Scholar 

  • García-Plazaola JI, Becerril JM (2000) Effects of drought on photoprotective mechanisms in European beech (Fagus sylvatica L.) seedlings from different provenances. Trees (Berl) 14:485–490. doi:10.1007/s004680000068

    Article  Google Scholar 

  • Gezelius K, Hallen M (1980) Seasonal variation in ribulose bisphosphate activity in Pinus sylvestris. Physiol Plant 48:88–98. doi:10.1111/j.1399-3054.1980.tb03224.x

    Article  CAS  Google Scholar 

  • Giménez C, Mitchell VJ, Lawlor D (1992) Regulation of photosynthesis rate of two sunflower hybrids under water stress. Plant Physiol 98:516–524

    Article  PubMed  Google Scholar 

  • Gitelson AA, Merzlyak MN (2004) Non-destructive assessment of chlorophyll, carotenoid and anthocyanin content in higher plant leaves: principles and algorithms. In: Stamatiadis S, Lynch JM, Schepers JS (eds) Remote sensing for agriculture and the environment. Greece, Ella, pp 78–94

  • Gratani L, Pesoli P, Crescente MF (1998) Relationship between photosynthetic activity and chlorophyll content in an isolated Quercus ilex L. tree during the year. Photosynthetica 35:445–451. doi:10.1023/A:1006924621078

    Article  Google Scholar 

  • Guo J, Trotter CM (2004) Estimating photosynthetic light-use efficiency using the photochemical reflectance index: variations among species. Funct Plant Biol 31:255–265. doi:10.1071/FP03185

    Article  CAS  Google Scholar 

  • Holt NE, Zigmantas D, Valkunas L, Li XP, Niyogi KK, Fleming GR (2005) Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science 307:433–436. doi:10.1126/science.1105833

    Article  PubMed  CAS  Google Scholar 

  • Li XP, Björkman O, Shih C, Grossman AR, Rosenquist M, Jansson S, Niyogi KK (2000) A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403:391–395. doi:10.1038/35000131

    Article  PubMed  CAS  Google Scholar 

  • Llorens L, Peñuelas J, Filella I (2003) Diurnal and seasonal variations in the photosynthetic performance and water relations of two co-occurring Mediterranean shrubs, Erica multiflora and Globularia alypum. Physiol Plant 118:84–95. doi:10.1034/j.1399-3054.2003.00101.x

    Article  PubMed  CAS  Google Scholar 

  • Long SP, Humphries S, Falkowski PG (1994) Photoinhibition of photosynthesis in nature. Annu Rev Plant Physiol Plant Mol Biol 45:633–662. doi:10.1146/annurev.pp.45.060194.003221

    Article  CAS  Google Scholar 

  • Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with folin reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Lundmark T, Bergh J, Strand M, Koppel A (1998) Seasonal variation of maximum photochemical efficiency in boreal Norway spruce stands. Trees (Berl) 13:63–67. doi:10.1007/s004680050187

    Article  Google Scholar 

  • Man R, Lieffers VJ (1997) Seasonal variations of photosynthetic capacities of white spruce (Picea glauca) and jack pine (Pinus banksiana) saplings. Can J Bot 75:1766–1771. doi:10.1139/b97-890

    Article  Google Scholar 

  • Martin B, Ruiz-Torres NA (1992) Effects of water-deficit stress on photosynthesis, its components and component limitations, and on water use efficiency in wheat (Triticum aestivum L.). Plant Physiol 100:733–739

    Article  PubMed  CAS  Google Scholar 

  • Nakaji T, Oguma H, Fujinuma Y (2006) Seasonal changes in the relationship between photochemical reflectance index and photosynthetic light use efficiency of Japanese larch needles. Int J Remote Sens 27:493–509. doi:10.1080/01431160500329528

    Article  Google Scholar 

  • Oliveira G, Peñuelas J (2004) Effects of winter cold stress on photosynthesis and photochemical efficiency of PSII of the Mediterranean Cistus albidus L. and Quercus ilex L. Plant Ecol 175:179–191. doi:10.1007/s11258-005-4876-x

    Article  Google Scholar 

  • Ottander C, Campbell D, Öquist G (1995) Seasonal changes in photosystem II organization and pigment composition in Pinus sylvestris. Planta 197:176–183. doi:10.1007/BF00239954

    Article  CAS  Google Scholar 

  • Peñuelas J, Gamon JA, Fredeen AL, Merino J, Field CB (1994) Reflectance indices associated with physiological changes in nitrogen- and water-limited sunflower leaves. Remote Sens Environ 48:135–146. doi:10.1016/0034-4257(94)90136-8

    Article  Google Scholar 

  • Peñuelas J, Filella I, Gamon JA (1995) Assessment of photosynthetic radiation-use efficiency with spectral reflectance. New Phytol 131:291–296. doi:10.1111/j.1469-8137.1995.tb03064.x

    Article  Google Scholar 

  • Powles SB (1984) Photoinhibition of photosynthesis induced by visible light. Annu Rev Plant Physiol 35:15–44. doi:10.1146/annurev.pp.35.060184.000311

    Article  CAS  Google Scholar 

  • Richardson AD, Berlyn GP (2002) Spectral reflectance and photosynthetic properties of Betula papyrifera (Betulaceae) leaves along an elevational gradient on Mt. Mansfield, Vermont, USA. Am J Bot 89:88–94. doi:10.3732/ajb.89.1.88

    Article  Google Scholar 

  • Richardson AD, Berlyn GP, Duigan SP (2003) Reflectance of Alaskan black spruce and white spruce foliage in relation to elevation and latitude. Tree Physiol 23:537–544

    PubMed  Google Scholar 

  • Richardson AD, Berlyn GP, Gregoire TG (2001) Spectral reflectance of Picea rubens (Pinaceae) and Abies balsamea (Pinaceae) needles along an elevational gradient, Mt. Moosilauke, New Hampshire, USA. Am J Bot 88:667–676. doi:10.2307/2657067

    Article  PubMed  Google Scholar 

  • Richardson AD, Aikens M, Berlyn GP, Marshall P (2004) Drought stress and paper birch (Betula papyrifera) seedlings: effects of an organic biostimulant on plant health and stress tolerance, and detection of stress effects with instrument-based, noninvasive methods. J Arboric 30:52–61

    Google Scholar 

  • Ruth B, Hoque E, Weisel B, Hutzler PJS (1991) Reflectance and fluorescence parameters of needles of Norway spruce affected by forest decline. Remote Sens Environ 38:35–44. doi:10.1016/0034-4257(91)90070-M

    Article  Google Scholar 

  • Schaberg PG, Wilkinson RC, Shane JB, Donnelly JR, Cali PF (1995) Winter photosynthesis of red spruce from three Vermont seed sources. Tree Physiol 15:345–350

    PubMed  Google Scholar 

  • Schaberg PG, Shane JB, Cali PF, Donnelly JR, Strimbeck GR (1998) Photosynthetic capacity of red spruce during winter. Tree Physiol 18:271–276

    PubMed  Google Scholar 

  • Sharma PK, Hall DO (1992) Effect of high-irradiance stress on primary photochemistry and light regulated enzymes of photosynthetic carbon metabolism. J Plant Physiol 139:719–726

    CAS  Google Scholar 

  • Shiu JH, Liao TS, Weng JH (2005) Difference of needle growth period and seasonal variations on photosynthesis, assimilate accumulation and cambial activity of Taiwan red pine (Pinus taiwanensis) grown in different altitude of Taiwan. Q J Chin For 38:291–230

    Google Scholar 

  • Sims DA, Gamon JA (2002) Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens Environ 81:337–354. doi:10.1016/S0034-4257(02)00010-X

    Article  Google Scholar 

  • Stylinski CD, Gamon JA, Oechel WC (2002) Seasonal patterns of reflectance indices, carotenoid pigments and photosynthesis of evergreen chaparral species. Oecologia 131:366–374. doi:10.1007/s00442-002-0905-9

    Article  Google Scholar 

  • Tsonev T, Velikova V, Georgieva K, Hyde PF, Jones HG (2003) Low temperature enhances photosynthetic down-regulation in French bean (Phaseolus vulgaris L.) plants. Ann Bot (Lond) 91:343–352. doi:10.1093/aob/mcg020

    Article  CAS  Google Scholar 

  • Usuda H, Ku MSB, Edwards GE (1985) Rates of photosynthesis relative to activity of photosynthetic enzymes, chlorophyll, and soluble protein content among ten C4 species. Aust J Plant Physiol 11:509–517

    Article  Google Scholar 

  • Verhoeven AS, Adams WWIII, Demmig-Adams B (1996) Close relationship between the state of the xanthophyll cycle pigments and photosystem II efficiency during recovery from winter stress. Physiol Plant 96:567–576. doi:10.1111/j.1399-3054.1996.tb00228.x

    Article  CAS  Google Scholar 

  • Verhoeven AS, Adams WWIII, Demmig-Adams B (1998) Two forms of sustained xanthophylls cycle-dependent energy dissipation in overwintering Euonymus kiautschovicus. Plant Cell Environ 21:893–903. doi:10.1046/j.1365-3040.1998.00338.x

    Article  Google Scholar 

  • Verhoeven AS, Adams WWIII, Demmig-Adams B (1999) The xanthophyll cycle and acclimation of Pinus ponderosa and Malva neglecta to winter stress. Oecologia 118:277–287. doi:10.1007/s004420050728

    Article  Google Scholar 

  • Vogg G, Heim R, Hansen J, Schafer C, Beck E (1998) Frost hardening and photosynthetic performance of Scots pine (Pinus sylvestris L.) needles. I. Seasonal changes in the photosynthetic apparatus and its function. Planta 204:193–200. doi:10.1007/s004250050246

    Article  CAS  Google Scholar 

  • Warren CR, Livingston NJ, Turpin DH (2004) Photosynthetic responses and N allocation in Douglas-fir needles following a brief pulse of nutrients. Tree Physiol 24:601–608

    PubMed  CAS  Google Scholar 

  • Weng JH, Liao TS, Sun KH, Chung CC, Lin CP, Chu CH (2005) Seasonal variation in photosynthesis of Picea morrisonicola grown in sub-alpine of subtropical Taiwan. Tree Physiol 25:973–979

    PubMed  CAS  Google Scholar 

  • Weng JH, Chen YN, Liao TS (2006a) Relationships between chlorophyll fluorescence parameters and photochemical reflectance index of tree species adapted to different temperature regimes. Funct Plant Biol 33:241–246. doi:10.1071/FP05156

    Article  CAS  Google Scholar 

  • Weng JH, Liao TS, Hwang MY, Chung CC, Lin CP, Chu CH (2006b) Seasonal variation in photosystem II efficiency and photochemical reflectance index of evergreen trees and perennial Gramineaes growing at low and high elevations of sub-tropical Taiwan. Tree Physiol 26:1097–1104

    PubMed  CAS  Google Scholar 

  • Williams EL, Hovenden MJ, Close DC (2003) Strategies of light energy utilization, dissipation and attenuation in six co-occurring alpine heath species in Tasmania. Funct Plant Biol 30:1205–1218. doi:10.1071/FP03145

    Article  Google Scholar 

  • Winkel T, Méthy M, Thénot F (2002) Radiation use efficiency, chlorophyll fluorescence, and reflectance indices associated with ontogenic changes in water-limited Chenopodium quinoa leaves. Photosynthetica 40:227–232. doi:10.1023/A:1021345724248

    Article  CAS  Google Scholar 

  • Zarter CR, Demmig-Adams B, Ebbert V, Adamska I, Adams WWIII (2006) Photosynthetic capacity and light harvesting efficiency during the winter-to-spring transition in subalpine conifers. New Phytol 172:283–292. doi:10.1111/j.1469-8137.2006.01816.x

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Hennessey TC, Heinemann RA (1997) Acclimation of loblolly pine (Pinus taeda) foliage to light intensity as related to leaf nitrogen availability. Can J Res 27:1032–1040. doi:10.1139/cjfr-27-7-1032

    Article  Google Scholar 

  • Zhang J-L, Zhu J-J, Cao K-F (2007) Seasonal variation in photosynthesis in six woody species with different leaf phenology in a valley savanna in southwestern China. Trees (Berl) 21:631–643. doi:10.1007/s00468-007-0156-9

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Science Council, Taiwan, under projects of Long-Term Ecological Research. We are indebted to Professor Chih-Ning Sun, National Chung-Hsing University for her insightful comments and critical reading of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jen-Hsien Weng.

Additional information

Communicated by W. Bilger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weng, JH., Lai, KM., Liao, TS. et al. Relationships of photosynthetic capacity to PSII efficiency and to photochemical reflectance index of Pinus taiwanensis through different seasons at high and low elevations of sub-tropical Taiwan. Trees 23, 347–356 (2009). https://doi.org/10.1007/s00468-008-0283-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-008-0283-y

Keywords

Navigation