Skip to main content

Desiccation tolerance acquisition in developing beech (Fagus sylvatica L.) seeds: the contribution of dehydrin-like protein

Abstract

The acquisition of desiccation tolerance (DT) in developing beech (Fagus sylvatica L.) seeds and the role of a dehydrin protein in this process were investigated. DT was determined by measurement of electrolyte leakage and germination capacity after drying to 10–12% moisture content (MC). In addition to mass maturity, the presence of heat-stable proteins, dehydrin accumulation and the peak of ABA content were measured in relation to the acquisition of DT. Mass maturity was achieved at 16 weeks after flowering (WAF). The germination capacity increased from 8% at 12 WAF to 80–90% after 16 WAF. Cell membrane integrity, measured as a decrease in electrolyte leakage after desiccation, was acquired at 16 WAF. Additionally, the ratio of heat-stable to soluble proteins was the highest at 16 WAF. One dehydrin-like protein with a molecular mass 44 kDa, named DHN44, was detected in embryonic axes at 16 WAF and in cotyledons at 17 WAF, and its gradual accumulation was observed in mature seeds. With regard to the acquisition of DT, the strongest correlations were detected between electrolyte leakage, DHN44 accumulation, and the percentage of heat-stable proteins. These results suggest that developing beech seeds become tolerant to desiccation at 16 WAF. The effect of desiccation and ABA treatment on DHN44 synthesis was tested before (14 WAF) and after the DT acquisition (18 WAF). Depending on the maturation stage desiccation and ABA treatment can induce or enlarge DHN44 expression.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Baker J, Steele C, Dure LIII (1988) Sequence and characterization of 6 Lea proteins and their genes from cotton. Plant Mol Biol 11:277–291. doi:10.1007/BF00027385

    Article  CAS  Google Scholar 

  • Black M, Corbineau F, Gee H, Côme D (1999) Water content, raffinose, and dehydrins in the induction of desiccation tolerance in immature wheat embryos. Plant Physiol 120:463–471. doi:10.1104/pp.120.2.463

    PubMed  Article  CAS  Google Scholar 

  • Blackman SA, Obendorf RL, Leopold AC (1995) Desiccation tolerance in developing soybean seeds: the role of stress proteins. Physiol Plant 93(4):630–638. doi:10.1111/j.1399-3054.1995.tb05110.x

    Article  CAS  Google Scholar 

  • Blackman SA, Wettlaufer SH, Obendorf RL, Leopold AC (1991) Maturation proteins associated with desiccation tolerance in soybean. Plant Physiol 96(3):868–874

    PubMed  Article  CAS  Google Scholar 

  • Bonner FT (1990) Storage of seeds: potential and limitations for germplasm conservation. For Ecol Manage 35:35–43

    Article  Google Scholar 

  • Bostock RM, Quatrano RS (1992) Regulation of Em gene expression in rice. Plant Physiol 98:1356–1363

    PubMed  Article  CAS  Google Scholar 

  • Boudet J, Buitink J, Hoekstra FA, Rogniaux H, Larré C, Satour P et al (2006) Comparative analysis of the heat-stable proteome of radicles of Medicago truncatula seeds during germination identifies late embryogenesis abundant proteins associated with desiccation tolerance. Plant Physiol 140(4):1418–1436. doi:10.1104/pp.105.074039

    PubMed  Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities utilizing the principle of protein dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    PubMed  Article  CAS  Google Scholar 

  • Buitink J, Vu BL, Satour P, Leprince O (2003) The re-establishment of desiccation tolerance in germinated radicles of Medicago truncatula Gaernt. seeds. Seed Sci Res 13:273–286. doi:10.1079/SSR2003145

    Article  CAS  Google Scholar 

  • Close TJ (1996) Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant 97:795–803. doi:10.1111/j.1399-3054.1996.tb00546.x

    Article  CAS  Google Scholar 

  • Close TJ (1997) Dehydrins: a commonalty in the response of plants to dehydration and low temperature. Physiol Plant 100(2):291–296. doi:10.1111/j.1399-3054.1997.tb04785.x

    Article  CAS  Google Scholar 

  • Close TJ, Fenton RD, Moonan F (1993) A view of plant dehydrins using antibodies specific to the carboxy terminal peptide. Plant Mol Biol 23(2):279–286. doi:10.1007/BF00029004

    PubMed  Article  CAS  Google Scholar 

  • Daws MI, Lydall E, Chmielarz P, Leprince O, Mathews S, Thanos CA et al (2004) Developmental heat sum influences recalcitrant seed traits in Aesculus hippocastanum across Europe. New Phytol 162:157–166. doi:10.1111/j.1469-8137.2004.01012.x

    Article  Google Scholar 

  • Dure LIII (1993) A repeating 11-mer amino acid motif and plant desiccation. Plant J 3(3):363–369. doi:10.1046/j.1365-313X.1993.t01-18-00999.x

    PubMed  Article  CAS  Google Scholar 

  • Ellis RH, Hong TD, Roberts EH (1990) An intermediate category of seed storage behaviour? J Exp Bot 41:1167–1174. doi:10.1093/jxb/41.9.1167

    Article  Google Scholar 

  • Ellis RH, Hong TD, Roberts EH (1991) An intermediate category of seed storage behaviour? II: effects of provenance, immaturity, and imbibition on desiccation-tolerance in coffee. J Exp Bot 42:653–657. doi:10.1093/jxb/42.5.653

    Article  Google Scholar 

  • Ellis RH, Pieta Filho C (1992) Seed development and cereal seed longevity. Seed Sci Res 2:9–15

    Article  Google Scholar 

  • Fu JR, Yang XQ, Jiang XC, He JX, Song SQ (1997) Heat stable proteins and desiccation tolerance in recalcitrant and orthodox seeds. In: Ellis RH, Black M, Murdoch AJ, Hong TD (eds) Basic and applied aspects of seeds biology, Kluwer, Dordrecht, pp 705–713

  • Goldberg RB, de Paiva G, Yadegari R (1994) Plant embryogenesis: zygote to seed. Science 266(5185):605–614. doi:10.1126/science.266.5185.605

    PubMed  Article  CAS  Google Scholar 

  • Gosling PG (1991) Beechnuts storage: a review and practical interpretation of the scientific literature. Forestry 64:51–59. doi:10.1093/forestry/64.1.51

    Article  Google Scholar 

  • Goyal K, Walton LJ, Tunnacliffe A (2005) LEA proteins prevent protein aggregation due to water stress. Biochem J 388:151–157. doi:10.1042/BJ20041931

    PubMed  Article  CAS  Google Scholar 

  • Han B, Berjak P, Pammenter N, Farrant J, Kermode AR (1997) The recalcitrant plant species, Castanospermum australe and Trichilia dregeana, differ in their ability to produce dehydrin-related polypeptides during seed maturation and in response to ABA or water-deficit-related stresses. J Exp Bot 48(9):1717–1726. doi:10.1093/jxb/48.9.1717

    Article  CAS  Google Scholar 

  • Hinniger C, Caillet V, Michoux F, Ben Amor M, Tanksley S, Lin C et al (2006) Isolation and characterization of cDNA encoding three dehydrins expressed during Coffea canephora (Robusta) grain development. Ann Bot (Lond) 97(5):755–765. doi:10.1093/aob/mcl032

    Article  CAS  Google Scholar 

  • Hoekstra FA, Golovina EA, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6(9):431–438. doi:10.1016/S1360-1385(01)02052-0

    PubMed  Article  CAS  Google Scholar 

  • Ismail AM, Hall AE, Close TJ (1999) Purification and partial characterization of a dehydrin involved in chilling tolerance during seedling emergence of cowpea. Plant Physiol 120:237–244. doi:10.1104/pp.120.1.237

    PubMed  Article  CAS  Google Scholar 

  • ISTA (1999) International rules for seed testing: rules1999. Seed Sci Technol 27(Suppl):1–133

    Google Scholar 

  • Jiménez JA, Rodríguez D, Lorenzo O, Nicolás G, Nicolás C (2006) Characterization of a protein kinase (FsPK4) with an acidic domain, regulated by abscisic acid and specifically located in Fagus sylvatica L. seeds. J Plant Physiol 163:761–769. doi:10.1016/j.jplph.2005.07.010

    PubMed  Article  CAS  Google Scholar 

  • Jiménez JA, Alonso-Ramírez A, Nicolás C (2008) Two cDNA clones (FsDhn1 and FsClo1) up regulated by ABA are involved in drought responses in Fagus sylvatica L. seeds. J Plant Physiol (Epub ahead of print)

  • Kalemba EM, Pukacka S (2008) Changes in late embryogenesis abundant proteins and a small heat shock protein during storage of beech (Fagus sylvatica L.) seeds. Environ Exp Bot 63:274–280. doi:10.1016/j.envexpbot.2007.12.011

    Article  CAS  Google Scholar 

  • Kermode AR, Bewley JD (1985) The role of maturation drying in the transition from seed development to germination. J Exp Bot 36(12):1916–1927. doi:10.1093/jxb/36.12.1916

    Article  CAS  Google Scholar 

  • Kermode AR, Bewley JD, Dasgupta J, Misra S (1986) The transition from seed development to germination: a key role for desiccation? HortScience 21(5):1113–1118

    CAS  Google Scholar 

  • Kermode AR (1997) Approaches to elucidate the basis of desiccation-tolerance in seeds. Seed Sci Res 7:75–95

    Article  CAS  Google Scholar 

  • Kermode AR (2005) Role of abscisic acid in seed dormancy. J Plant Growth Regul 24:319–344. doi:10.1007/s00344-005-0110-2

    Article  CAS  Google Scholar 

  • Koornneef M, Hanhart CJ, Hilhorst HWM, Karssen CM (1989) In vivo inhibition of seed development and reserve protein accumulation in recombinants of abscisic acid biosynthesis and responsiveness mutants in Arabidopsis thaliana. Plant Physiol 90:463–469

    PubMed  Article  CAS  Google Scholar 

  • Koster KL, Leopold AC (1988) Sugars and desiccation tolerance in seeds. Plant Physiol 88(3):829–832

    PubMed  Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. doi:10.1038/227680a0

    PubMed  Article  CAS  Google Scholar 

  • Lane BG (1991) Cellular desiccation and hydration: developmentally regulated proteins, and the maturation and germination of seed embryos. FASEB J 5:2893–2901

    PubMed  CAS  Google Scholar 

  • Le Page-Degivry MT, Garello G, Barthe P (1997) Changes in abscisic acid biosynthesis and catabolism during dormancy breaking in Fagus sylvatica embryo. J Plant Growth Regul 16:57–61. doi:10.1007/PL00006978

    Article  CAS  Google Scholar 

  • León-Lobos P, Ellis RH (2002) Seed storage behaviour of Fagus sylvatica and Fagus crenata. Seed Sci Res 12:31–37. doi:10.1079/SSR200195

    Article  Google Scholar 

  • Liang Y, Sun WQ (2000) Desiccation tolerance of recalcitrant Theobroma cacao embryonic axes: the optimal drying rate and its physiological basis. J Exp Bot 51(352):1911–1919. doi:10.1093/jexbot/51.352.1911

    PubMed  Article  CAS  Google Scholar 

  • Marian CO, Krebs SL, Arora R (2003) Dehydrin variability among rhododendron species: a 25-kDa dehydrin is conserved and associated with cold acclimation across diverse species. New Phytol 161:773–780. doi:10.1111/j.1469-8137.2003.01001.x

    Article  CAS  Google Scholar 

  • Mundy J, Chuan H (1988) Abscisic acid and water stress induce the expression of a novel gene. EMBO J 7:2279–2286

    PubMed  CAS  Google Scholar 

  • Nicolás C, Rodríguez D, Poulsen F, Eriksen EN, Nicolás G (1997) The expression of an abscisic acid-responsive glycine-rich protein coincides with the level of seed dormancy in Fagus sylvatica. Plant Cell Physiol 38:1303–1310

    PubMed  Google Scholar 

  • Panza V, Distéfano AJ, Carjuzaa P, Láinez V, Del Vas M, Maldonado S (2007) Detection of dehydrin-like proteins in embryos and endosperm of mature Euterpe edulis seeds. Protoplasma 231:1–5. doi:10.1007/s00709-007-0248-9

    PubMed  Article  CAS  Google Scholar 

  • Pawlowski TA (2007) Proteomics of European beech (Fagus sylvatica L.) seed dormancy breaking: influence of abscisic and gibberellic acids. Proteomics 7:2246–2257. doi:10.1002/pmic.200600912

    PubMed  Article  CAS  Google Scholar 

  • Poulsen KM (1993) Predicting the storage life of beechnuts. Seed Sci Technol 21:327–337

    Google Scholar 

  • Poulsen KM, Kundsen H (1999) Viability constants based on eight years storage of beech nuts (Fagus sylvatica L.). Seed Sci Technol 27:1037–1039

    Google Scholar 

  • Pukacka S, Hoffmann SK, Goslar J, Pukacki PM, Wójkiewicz E (2003) Water and lipid relations in beech (Fagus sylvatica L.) seeds and its effect on storage behaviour. Biochim Biophys Acta 1621(1):48–56

    PubMed  CAS  Google Scholar 

  • Pukacka S, Wójkiewicz E (2003) The effect of temperature of drying on viability and some factors affecting storability of Fagus sylvatica seeds. Acta Physiol Plant 25:163–169. doi:10.1007/s11738-003-0049-5

    Article  Google Scholar 

  • Pukacka S, Ratajczak E (2007a) Ascorbate and glutathione metabolism during development and desiccation of orthodox and recalcitrant seeds of the genus Acer. Funct Plant Biol 34:601–613. doi:10.1071/FP07013

    Article  CAS  Google Scholar 

  • Pukacka S, Ratajczak E (2007b) Age-related biochemical changes during storage of beech (Fagus sylvatica L.) seeds. Seed Sci Res 17:45–53. doi:10.1017/S0960258507629432

    Article  CAS  Google Scholar 

  • Reyes D, Rodríguez D, González-García MP, Lorenzo O, Nicolás G, García-Martínez JL et al (2006a) Overexpression of a protein phosphatase 2C from beech seeds in Arabidopsis shows phenotypes related to abscisic acid responses and gibberellin biosynthesis. Plant Physiol 141:1414–1421. doi:10.1104/pp.106.084681

    PubMed  Article  CAS  Google Scholar 

  • Reyes D, Rodríguez D, Lorenzo O, Nicolás G, Cañas R, Cantón FR et al (2006b) Immunolocalization of FsPK1 correlates this abscisic acid-induced protein kinase with germination arrest in Fagus sylvatica L. seeds. J Exp Bot 57:923–929. doi:10.1093/jxb/erj077

    PubMed  Article  CAS  Google Scholar 

  • Roberts EH (1973) Predicting the storage life of seeds. Seed Sci Technol 1:499–514

    Google Scholar 

  • Rorat T (2006) Plant dehydrins–tissue location, structure and function. Cell Mol Biol Lett 11:536–556. doi:10.2478/s11658-006-0044-0

    PubMed  Article  CAS  Google Scholar 

  • Sanhewe AJ, Ellis RH (1996) Seed development and maturation in Phaseolus vulgaris II: post-harvest longevity in air-dry storage. J Exp Bot 47(7):959–965. doi:10.1093/jxb/47.7.959

    Article  CAS  Google Scholar 

  • Shen Q, Zhang P, Ho THD (1996) Modular nature of abscisic acid (ABA) response complexes: composite promoter units that are necessary and sufficient for aba lnduction of gene expression in barley. Plant Cell 8:1107–1119

    PubMed  Article  CAS  Google Scholar 

  • Sun WQ, Leopold AC (1993) Acquisition of desiccation tolerance in soybeans. Physiol Plant 87(3):403–409. doi:10.1111/j.1399-3054.1993.tb01748.x

    Article  Google Scholar 

  • Suszka B, Muller C, Bonnet-Masimbert M (1994) Seeds of forest trees: from collection to seedlings. INRA, Paris

    Google Scholar 

  • Walker-Simmons MK, Abrams SR (1991) Use of ABA immunoassays. In: Davies WJ, Jones HG (eds) Abscisic acid: physiology and biochemistry: environmental plant biology series. Bios-Scientific Publishers, Oxford, pp 53–79

    Google Scholar 

  • Williamson JD, Quatrano RS (1988) ABA-regulation of two classes of embryospecific sequences in mature wheat embryos. Plant Physiol 86:208–215

    PubMed  Article  CAS  Google Scholar 

  • Wise MJ (2003) LEAping to conclusions: a computational reanalysis of late embryogenesis abundant proteins and their possible roles. BMC Bioinformatics 4:52. doi:10.1186/1471-2105-4-52

    PubMed  Article  Google Scholar 

  • Xu D, Duan X, Wang B, Hong B, Ho THD, Wu R (1996) Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110:249–257

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The antiserum raised against the K segment was kindly supplied by T. J. Close, Department of Botany and Plant Sciences, University of California, Riverside, CA, USA. This research was supported by The Ministry of Science and Information (Poland)—grant No. 2PO6L02927.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa M. Kalemba.

Additional information

Communicated by J. Major.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kalemba, E.M., Janowiak, F. & Pukacka, S. Desiccation tolerance acquisition in developing beech (Fagus sylvatica L.) seeds: the contribution of dehydrin-like protein. Trees 23, 305 (2009). https://doi.org/10.1007/s00468-008-0278-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00468-008-0278-8

Keywords

  • Abscisic acid
  • Beech
  • Dehydrin
  • Desiccation tolerance
  • Seed development