Skip to main content
Log in

Photosynthetic changes and oxidative stress caused by iron ore dust deposition in the tropical CAM tree Clusia hilariana

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

The effect of iron solid particulate matter (SPMFe) deposited onto soil and leaves on photosynthesis and oxidative stress was evaluated in Clusia hilariana, a CAM tropical tree of high occurrence in Brazilian restingas. Significant increases in iron content were found in plants exposed to SPMFe applied onto leaf and soil surfaces. However, only the application of SPMFe on leaves of C. hilariana caused significant reductions in some evaluated characteristics such as photosynthetic rate, stomatal conductance, transpiration, organic acid accumulation, potential quantum yield of PSII, and changes in daily CAM photosynthesis pattern. Increase in relative membrane permeability and reduction in catalase and superoxide dismutase activities in the leaves of plants exposed to SPMFe also were observed; however, lipid peroxidation did not change. These responses seem to be due to the combination of physical effects such as increase of leaf temperature, reduction in light absorption, obstruction of stomatal pores, and biochemical effects triggered by oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399. doi:10.1146/annurev.arplant.55.031903.141701

    Article  PubMed  CAS  Google Scholar 

  • Becana M, Moran JF, Iturbe-Ormaetxe I (1998) Iron-dependent oxygen free radical generation in plants subjected to environmental stress: toxicity and antioxidant protection. Plant Soil 201:137–147. doi:10.1023/A:1004375732137

    Article  CAS  Google Scholar 

  • Black CC, Osmond CB (2003) Crassulacean acid metabolism photosynthesis: ‘working the night shift’. Photosynth Res 76:329–341. doi:10.1023/A:1024978220193

    Article  PubMed  CAS  Google Scholar 

  • Borka G (1980) The effect of cement dust pollution on growth and metabolism of Helianthus annuus. Environ Pollut 22:75–79. doi:10.1016/0143-1471(80)90084-7 series A

    Article  CAS  Google Scholar 

  • Borka G (1984) Effect of metalliferous dusts from dressing works on the growth, development, main metabolic processes and yields of winter wheat in situ under controlled conditions. Environ Pollut 35:67–73. doi:10.1016/0143-1471(84)90131-4 series A

    Article  CAS  Google Scholar 

  • Del Longo OT, Gonzales CA, Pastori GM, Trippi VS (1993) Antioxidant defenses under hypergenic and hyper osmotic conditions in leaves of two lines of maize with differential sensitivity to drought. Plant Cell Physiol 34:1023–1028

    CAS  Google Scholar 

  • Dias ATC, Mattos EA, Vieira SA, Azeredo JV, Scarano FR (2006) Above ground biomass stock of native woodland on a Brazilian sandy coastal plain: estimates based on the dominant tree species. For Ecol Manage 226:364–367. doi:10.1016/j.foreco.2006.01.020

    Article  Google Scholar 

  • Eastmond PJ, Ross JD (1997) Evidence that the induction of Crassulacean acid metabolism by water stress in Mesembryanthemum crystallinum (L.) involves root signalling. Plant Cell Environ 20:1559–1565. doi:10.1046/j.1365-3040.1997.d01-50.x

    Article  CAS  Google Scholar 

  • Fang WC, Wang JW, Lin CC, Kao CH (2001) Iron induction of lipid peroxidation and effects on antioxidative enzyme activities in rice leaves. Plant Growth Regul 35:75–80. doi:10.1023/A:1013879019368

    Article  CAS  Google Scholar 

  • Franco AC, Herzog B, Hübner C, Mattos de EA, Scarano FR, Ball E, Lüttge U (1999) Diurnal changes in chlorophyll a fluorescence, CO2-exchange and organic acid decarboxylation in the tropical CAM tree Clusia hilariana. Tree Physiol 19:635–644

    PubMed  Google Scholar 

  • Grantz DA, Garnerb JHB, Johnson DW (2003) Ecological effects of particulate matter. Environ Int 29:213–239. doi:10.1016/S0160-4120(02)00181-2

    Article  PubMed  CAS  Google Scholar 

  • Havir EA, McHale NA (1987) Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiol 84:450–455

    Article  PubMed  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplast. I. kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198. doi:10.1016/0003-9861(68)90654-1

    Article  PubMed  CAS  Google Scholar 

  • Hirano T, Kiyota M, Aiga I (1995) Physical effects of dust on leaf physiology of cucumber and kidney bean plants. Environ Pollut 89:255–261. doi:10.1016/0269-7491(94)00075-O

    Article  PubMed  CAS  Google Scholar 

  • Kampfenkel K, Montagu MV, Inzé D (1995) Effects of iron excess on Nicotiana plumbagnifolia plants: implications to oxidative stress. Plant Physiol 107:725–735

    PubMed  CAS  Google Scholar 

  • Kuki KN, Oliva MA, Pereira EG (2008) Iron ore industry emissions as a potential ecological risk factor for tropical coastal vegetation. Environ Manage 42:111–121. doi:10.1007/s00267-008-9093-7

    Article  PubMed  Google Scholar 

  • Liebig M, Scarano FR, Mattos de EA, Zaluar HLT, Lüttge U (2001) Ecophysiological and floristic implications of sex expression in the dioecious neotropical CAM tree Clusia hilariana Schltdl. Trees (Berl) 15:278–288. doi:10.1007/s004680100096

    Article  Google Scholar 

  • Lopes SA, Oliva MA, Martinez CA (2000) Impacto das imissões de dióxido de enxofre e deposição de material particulado de ferro em espécies vegetais de restinga: avaliação ecofisiológica. In: Espíndola E, Paschoal C, Rocha O, Bohrer M, Oliveira Neto A (eds) Ecotoxicologia. RiMa Artes e Textos, São Carlos, pp 53–71

    Google Scholar 

  • Lüttge U (2002) CO2-concentrating: consequences in crassulacean acid metabolism. J Exp Bot 53:2131–2142. doi:10.1093/jxb/erf081

    Article  PubMed  CAS  Google Scholar 

  • Lüttge U (2006) Photosynthetic flexibility and ecophysiological plasticity: questions and lessons from Clusia, the only CAM tree, in the neotropics. New Phytol 171:7–25. doi:10.1111/j.1469-8137.2006.01755.x

    Article  PubMed  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, Second edn. Academic Press, London, p 889

    Google Scholar 

  • Naidoo G, Chirkoot D (2004) The effects of coal dust on photosynthetic performance of the mangrove, Avicennia marina in Richards Bay, South Africa. Environ Pollut 127:359–366. doi:10.1016/j.envpol.2003.08.018

    Article  PubMed  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by micorrhization. J Exp Bot 53:1351–1365. doi:10.1093/jexbot/53.372.1351

    Article  PubMed  Google Scholar 

  • Sharifi MR, Gibson AC, Rundel PW (1997) Surface dust impacts on gas exchange in Mojave Desert shrubs. J Appl Ecol 34:837–846. doi:10.2307/2405275

    Article  Google Scholar 

  • Shevyakova NI, Stetsenko LA, Meshcheryakov AB, Kuznetsov VV (2002) The activity of the peroxidase system in the course of stress-induced CAM development. Russ J Plant Physiol 49:598–604. doi:10.1023/A:1020224531599

    Article  CAS  Google Scholar 

  • Sinha S, Gupta M, Chandra P (1997) Oxidative stress induced by iron in Hydrilla verticillata (l.f.) Royle: response of antioxidants. Ecotoxicol Environ Saf 38:286–291. doi:10.1006/eesa.1997.1598

    Article  PubMed  CAS  Google Scholar 

  • Souza-Santos P, Ramos RS, Ferreira ST, Carvalho-Alves PC (2001) Iron-induced oxidative damage of corn root plasma membrane H+-ATPase. Biochim Biophys Acta 1512:357–366. doi:10.1016/S0005-2736(01)00341-8

    Article  PubMed  CAS  Google Scholar 

  • Tarhanen S, Metsärinne S, Holopainen T, Oksanen J (1999) Membrane permeability response of lichen Bryoria fuscescens to wet deposited heavy metals and acid rain. Environ Pollut 104:121–129. doi:10.1016/S0269-7491(98)00157-2

    Article  CAS  Google Scholar 

  • Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrometers of different resolution. J Plant Physiol 144:307–313

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Gusmão Pereira.

Additional information

Communicated by T. Grams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pereira, E.G., Oliva, M.A., Kuki, K.N. et al. Photosynthetic changes and oxidative stress caused by iron ore dust deposition in the tropical CAM tree Clusia hilariana . Trees 23, 277–285 (2009). https://doi.org/10.1007/s00468-008-0275-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-008-0275-y

Keywords

Navigation