Skip to main content
Log in

Initial growth of Brazilian pine (Araucaria angustifolia) under equal soil volumes but contrasting rooting depths

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Araucaria angustifolia is a critically endangered tall tree species of valuable wood, and field observations led to the suggestion that limitations imposed to the vertical growth of its tap root system greatly restrict the height of mature individuals. However, experimental studies dealing with the effects of soil depth on the species growth are mostly lacking. This study evaluated and compared the growth responses of young plants of A. angustifolia to distinct rooting depths but same soil volumes. Seeds were planted in pots of different heights and diameters, all containing 3 liters of soil mixture. Plants were submitted to four available rooting depths: 65 (T1), 35 (T2), 20 (T3), and 10 (T4) cm. There were eight experimental units in each treatment, arranged in a randomized complete block design, each block containing two units per treatment. Contrary to what was expected, the T3 and T4 plants had accumulated more mass and attained the same height as the other two groups, after a 10-month growth period in a green house. Those plants also had thicker stems, longer shoot branches, and thicker and longer lateral roots, which were interpreted as compensatory responses to increase plant anchorage and stability. The inverse relationship between rooting depth and plant mass was attributed to a down-regulation of shoot growth because or restricted lateral space and/or poor soil aeration of the longer and narrower pots. This experiment allowed us to demonstrate that is not the possibility of the tap root to grow deep into the soil that ensures a better growth to plants of A. angustifolia: provided that the offer of soil volume and resources are the same, the vertical extension of the tap root does not result in greater growth of the plants. In fact, much greater growth impairment is expected from lateral than from vertical restriction to root growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bengough AG, Croser C, Pritchard J (1997) A biophysical analysis of root growth under mechanical stress. Plant Soil 189:155–164. doi:10.1023/A:1004240706284

    Article  CAS  Google Scholar 

  • Bengough AG, Bransby MF, Hans J, Mckenna SJ, Roberts TJ, Valentine TA (2006) Root responses to soil physical conditions; growth dynamics from field to cell. J Exp Bot 57:437–447

    Article  PubMed  CAS  Google Scholar 

  • Boot RGA (1989) The significance of size and morphology of root systems for nutrient acquisition and competition. In: Lambers H, Cambridge ML, Konings H, Pons TL (eds) Causes and consequences of variation in growth rate and productivity of higher plants. SBP Academic Publishing, The Hague, pp 299–311

    Google Scholar 

  • Carvalho PER (1994) Espécies florestais brasileiras. Recomendações silviculturais, potencialidades e uso da madeira. Embrapa/CNPF, Brasília

    Google Scholar 

  • Clark LJ, Whalley WR, Barraclough PB (2003) How do roots penetrate strong soil? Plant Soil 255:93–104. doi:10.1023/A:1026140122848

    Article  CAS  Google Scholar 

  • Coutts MP, Nielsen CCN, Nicoll BC (1999) The development of symmetry, rigidity and anchorage in the structural root system of conifers. Plant Soil 217:1–15. doi:10.1023/A:1004578032481

    Article  Google Scholar 

  • Danjon F, Fourcaud T, Bert D (2005) Root architecture and wind-firmness of mature Pinus pinaster. New Phytol 168:387–400. doi:10.1111/j.1469-8137.2005.01497.x

    Article  PubMed  Google Scholar 

  • Duarte LS, Dillenburg LR (2000) Ecophysiological responses of Araucaria angustifolia (Araucariaceae) seedlings to different irradiance levels. Aust J Bot 48:531–537. doi:10.1071/BT98046

    Article  Google Scholar 

  • Duarte LS, Dillenburg LR, Rosa LMG (2002) Assessing the role of light availability in the regeneration of Araucaria angustifolia (Araucariaceae). Aust J Bot 50:741–751. doi:10.1071/BT02027

    Article  Google Scholar 

  • Dupuy L, Fourcaud T, Stokes A (2005) A numerical investigation into the influence of soil type and root architecture on tree anchorage. Plant Soil 278:119–134. doi:10.1007/s11104-005-7577-2

    Article  CAS  Google Scholar 

  • Farjon A (2006) Araucaria angustifolia. In IUCN Red List of Threatened Species. IUCN 2006. Accessed 07/11/2007. http://www.iucnredlist.org

  • Ferreira A, Handro W (1979) Aspects of seed germination in Araucaria angustifolia (Bert.) O. Ktze. Revta brasil Bot 2:7–13

    Google Scholar 

  • Franco MAS, Dillenburg LR (2007) Ajustes morfológicos e fisiológicos em plantas jovens de Araucaria angustifolia (Bertol.) Kuntze em resposta ao sombreamento. Hoehnea 34:135–144

    Google Scholar 

  • Franco AC, Duarte HM, Gessler A, Mattos EA, Nahm M, Rennenberg H et al (2005) In situ measurements of carbon and nitrogen distribution and composition, photochemical efficiency and stable isotope ratios in Araucaria angustifolia. Trees (Berl) 19:422–430. doi:10.1007/s00468-004-0401-4

    Article  CAS  Google Scholar 

  • Garbin ML, Zandavalli RB, Dillenburg LR (2006) Soil patches of inorganic nitrogen in subtropical Brazilian plant communities with Araucaria angustifolia. Plant Soil 286:323–337. doi:10.1007/s11104-006-9046-y

    Article  CAS  Google Scholar 

  • Hoogh RJ, Dietrich AB (1979) Avaliação de sítio para Araucaria angustifolia (Bert.) O. Ktze. em povoamentos artificiais. Brasil Florestal 37:19–71

    Google Scholar 

  • Inoue MT, Galvão F, Torres DV (1979) A produção primária de Araucaria angustifolia (Bert.) O. Ktze. no estágio de muda em dependência da intensidade luminosa. Silvicultura 4:54–56

    Google Scholar 

  • Khuder H, Stokes A, Danjon F, Gouskou K, Lagane F (2007) Is it possible to manipulate root anchorage in young trees? Plant Soil 294:87–102. doi:10.1007/s11104-007-9232-6

    Article  CAS  Google Scholar 

  • Misra RK, Gibbons AK (1996) Growth and morphology of eucalypt seedling-roots, in relation to soil strength arising from compaction. Plant Soil 182:1–11. doi:10.1007/BF00010990

    Article  CAS  Google Scholar 

  • Mósena M, Dillenburg LR (2004) Early growth of Brazilian Pine (Araucaria angustifolia [Bertol.] O. Kuntze) in response to soil compaction and drought. Plant Soil 258:293–306. doi:10.1023/B:PLSO.0000016559.47135.21

    Article  Google Scholar 

  • Nicoll BC, Gardiner BA, Rayner B, Peace AJ (2006) Anchorage of coniferous trees in relation to species, soil type, and rooting depth. Can J Res 36:1871–1883. doi:10.1139/X06-072

    Article  Google Scholar 

  • Niklas KJ, Speck T (2001) Evolutionary trends in safety factors against wind-induced stem failure. Am J Bot 88:1266–1278. doi:10.2307/3558338

    Article  PubMed  Google Scholar 

  • Paul MJ, Foyer CH (2001) Sink regulation of photosynthesis. J Exp Bot 52:383–1400. doi:10.1093/jexbot/52.360.1383

    Article  Google Scholar 

  • Puchalski Â, Mantovani M, Dos Reis MS (2006) Variação em populações naturais de Araucaria angustifolia (Bert.) O. Kuntze associada a condições edafo-climáticas. Scien For 70:137–148

    Google Scholar 

  • Reubens B, Poesen J, Danjon F, Geudens G, Muys B (2007) The role of fine and coarse roots in shallow slope stability and soil erosion control with a focus on root system architecture: a review. Trees (Berl) 31:385–402. doi:10.1007/s00468-007-0132-4

    Article  Google Scholar 

  • Silva HD, Bellote AFJ, Ferreira CA, Bognola IA (2001) Recomendação de solos para Araucaria angustifolia com base nas suas propriedades físicas e químicas. Bol Pesq Fl 43:61–74

    Google Scholar 

  • Singh BP, Sainju UM (1998) Soil physical and morphological properties and root growth. HortSci 35:966–971

    Google Scholar 

  • Strojny Z, Nelson PV, Willits DH (1998) Pot soil air composition in conditions of high soil moisture and its influence on chrysanthemum growth. Sci Hortic (Amsterdam) 73:125–136. doi:10.1016/S0304-4238(97)00156-8

    Article  Google Scholar 

  • Tschaplinski TJ, Blake TJ (1985) Effects of root restriction on growth correlations, water relations and senescence of alder seedlings. Physiol Plant 64:167–176. doi:10.1111/j.1399-3054.1985.tb02331.x

    Article  Google Scholar 

  • Zandavalli RB, Dillenburg LR, Souza PVD (2004) Growth responses of Araucaria angustifolia (Araucariaceae) to inoculation with mycorrhizal fungus Glomus clarum. Appl Soil Ecol 25:245–255. doi:10.1016/j.apsoil.2003.09.009

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Agronomy School of the Federal University of Rio Grande do Sul for allowing the use of their greenhouse facilities and the “Coordenação de Aperfeiçoamento de Pessoal de Nível Superior” (CAPES/Brazil) for the fellowship awarded to the first author. This paper resulted from the master dissertation of the first author, conducted in the “Programa de Pós-Graduação em Botânica” of the Federal University of Rio Grande do Sul.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lúcia R. Dillenburg.

Additional information

Communicated by T. Grams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korndörfer, C.L., Mósena, M. & Dillenburg, L.R. Initial growth of Brazilian pine (Araucaria angustifolia) under equal soil volumes but contrasting rooting depths. Trees 22, 835–841 (2008). https://doi.org/10.1007/s00468-008-0244-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-008-0244-5

Keywords

Navigation