Skip to main content
Log in

Scots pine (Pinus sylvestris L.) wood properties in an alkaline air pollution environment

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

This paper examines the long-term influence on pine (Pinus sylvestris L.) wood properties of alkaline dust pollution (pH 12.3–12.7) emitted over 135 years from a cement plant in Estonia. A study of stemwood physical and mechanical properties in 70–80-year-old Scots pines growing in three zones of different air pollution levels showed serious deviations in comparison with a relatively healthy forest in an unpolluted area. Specimens from polluted trees evidenced smaller sapwood annual ring widths than those from the control trees. At the same time, the number of growth rings in sapwood at breast height increased under pollution. In the polluted areas, percentage of latewood in the annual ring widths was higher than in the unpolluted area. Small amounts of cement dust, which contains elements essential for the mineral nutrition of the trees, might have acted as fertilizer. Pine wood in the polluted stands exhibited increased density, bending strength across the grain, compression strength along the grain and, in some instances, hardness along the grain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allegretti O, Bernabei M, Negri M, Piutti E (1999) Sapwood–heartwood proportion related to same technological properties in Picea abies (L.) Karst. Paper presented at Proceedings of the Fourth International Conference on the Development of Wood Science, Wood Technology and Forestry, Missenden Abbey, UK, pp 475–485, 14 July 1999

  • Auclair D (1977) Effects des poussièrs sur la photosynthèse. II. Influence des pollutants particulaires sur la photosynthèse du Pin sylvestre et du peuplier. Annales des Sciences Forestières 34:47–57

    Article  CAS  Google Scholar 

  • Bektas I, Alma MH, Goker Y, Yuksel A, Gundogan R (2003) Influence of site on sapwood and heartwood ratios of Turkish calabrian pine. For Prod J 53(4):48–50

    Google Scholar 

  • Björklund L (1999) Identifying heartwood-rich stands or stems of Pinus sylvestris by using inventory data. Silva Fennica 33(2):119–129

    Google Scholar 

  • Borovikov AM, Ugoljev BN (1989) The wood handbook. Lesnaja promyšlennost’, Moscow, Russia

    Google Scholar 

  • Cajander AK (1949) Forest types and their significance. Acta Forestalia Fennica 56:1–71

    Google Scholar 

  • Cody RP, Smith JK (2006) Applied statistics and the SAS programming language 5th edn. Pearson Education Inc., Upper Saddle River, USA

    Google Scholar 

  • Duchesne I, Wilhelmsson L, Spangberg K (1997) Effect of in-forest sorting of Norway spruce (Picea abies) and Scots pine (Pinus sylvestris) on wood and fibre properties. Can J For Res 27(5):790–795. doi:10.1139/cjfr-27-5-790

    Article  Google Scholar 

  • Environmental Review No.13 (2004) Kunda Nordic Tsement. Heidelberg Cement Group, Kunda, Estonia

    Google Scholar 

  • Estonian Environment 1995 (1996) Ministry of the Environment of Estonia. Estonian Environment Information Centre, Tallinn, Estonia

    Google Scholar 

  • European Standard (2004) EN 384:2004 Structural timber—determination of characteristic values of mechanical properties and density. CEN, Brussels

    Google Scholar 

  • Gluch W (1980) Bioindikation mit produktionsbiologischen und morphometrischen Verfahren. Archiv für Naturschutz und Landschaftsforsch 20:99–116

    Google Scholar 

  • Hannrup B, Ekberg I, Persson A (2000) Genetic correlation among wood, growth capacity and stem traits in Pinus sylvestris. Scand J For Res 15:161–170. doi:10.1080/028275800750014966

    Article  Google Scholar 

  • Härtling S, Schulz H (1998) Biochemical parameters as biomarkers for the early recognition of environmental pollution in Scots pine trees. I. Phenolic compounds. Zeitschrift für Naturforschung 53c:331–340

    Google Scholar 

  • International Organization for Standardization (1975a) ISO 3130:1975 Wood—determination of moisture content for physical and mechanical tests. ISO, Switzerland

    Google Scholar 

  • International Organization for Standardization (1975b) ISO 3131:1975 Wood—determination of density for physical and mechanical tests. ISO, Switzerland

    Google Scholar 

  • International Organization for Standardization (1975c) ISO 3133:1975 Wood—determination of ultimate strength in static bending. ISO, Switzerland

    Google Scholar 

  • International Organization for Standardization (1975d) ISO 3349:1975 Wood—determination of modulus of elasticity in static bending. ISO, Switzerland

    Google Scholar 

  • International Organization for Standardization (1975e) ISO 3350:1975 Wood—determination of static hardness. ISO, Switzerland

    Google Scholar 

  • International Organization for Standardization (1976) ISO 3787:1976 Wood—determination of ultimate strength in compression parallel the grain. ISO, Switzerland

    Google Scholar 

  • Jäger HJ (1980) Indikation von Luftverunreinigungen durch morphometrische Untersuchungen an höheren Pflanzen. In: Schubert R, Schuh J (eds) Bioindikation, Teil 3. Kongress—und Tagungsberichte der Martin-Luther-Universität Halle—Wittenberg, Wissenschaftliche Beiträge 1980/26 (P 10), Halle, Germany, pp 43–52

  • Kärenlampi PP, Riekkinen M (2002) Pine heartwood formation as a maturation phenomenon. J Wood Sci 48(6):467–472

    Article  Google Scholar 

  • Kask R (2003) Mechanical and physical properties of Scots pine (Pinus sylvestris L.) wood on Vaccinium vitis-idaea and Myrtillus site type. M.Sc. Thesis, Estonian Agricultural University, Tartu, Estonia

  • Klõšeiko J (2003) Carbohydrate metabolism of conifers in alkalised growth conditions. Doctoral Thesis, Estonian Agricultural University, Tartu, Estonia

  • Lal B, Ambasht RS (1982) Impact of cement dust on the mineral and energy concentration of Psidium guayava. Environ Pollut (Ser A) 29:241–247. doi:10.1016/0143-1471(82)90065-4

    Article  CAS  Google Scholar 

  • Lindeberg J (2001) X-ray based dendro-analyses of wood properties. Rapporter—Institutionen for skogsskotsel, Sveriges Lantbruksuniversitet 50

  • Mäkinen H (1998) The suitability of height and radial increment variation in Pinus sylvestris (L.) for expressing environmental signals. For Ecol Manage 112(1/2):191–197. doi:10.1016/S0378–1127(98)00337–5

    Article  Google Scholar 

  • Mandre M (1995a) Changes in the nutrient composition of trees. In: Mandre M (ed) Dust pollution and forest ecosystem. A study of conifers in an alkaline environment. Institute of Ecology, Publication 3, Infotrükk, Tallinn, Estonia, pp 44–65

    Google Scholar 

  • Mandre M (1995b) Effects of dust pollution on carbohydrate balance in conifers. In: Mandre M (ed) Dust pollution and forest ecosystems. A study of conifers in an alkaline environment. Institute of Ecology, Publication 3, Infotrükk, Tallinn, Estonia, pp 78–95

    Google Scholar 

  • Mandre M (2002) Relationships between lignin and nutrients in Picea abies L. under alkaline air pollution. Water Air Soil Pollut 133:361–377. doi:10.1023/A:1012987503033

    Article  CAS  Google Scholar 

  • Mandre M, Tuulmets L, Rauk J, Ots K, Okasmets M (1994) Response reaction of conifers to alkaline dust pollution. Changes in growth. Proceeding of the Estonian Academy of Sciences. Ecology 4:79–95

    Google Scholar 

  • Mandre M, Kask R, Ots K, Pikk J (2007) Assessment of growth and stemwood quality of Scots pine on territory influenced by alkaline industrial dust. Environ Monit Assess 138:51–63. doi:10.1007/s10661-007-9790-3

    Article  PubMed  CAS  Google Scholar 

  • Matjuškin AP, Koržidckaja ZA, Kozlov VA, Ageeva MI, Vassileva AN, Golubeva VL (1974) Characteristics of Scots pine wood in connection with growth intensity. Petrozavodsk, Russia, pp 120–132

    Google Scholar 

  • Mattsson S (2002) Effects of site preparation on stem growth and clear wood properties in boreal Pinus sylvestris and Pinus condarta. Acta Universitatis Agriculturae Sueciae, Silvestria 240:1–37

    Google Scholar 

  • Mihailitšenko AL, Sadovnitši FP (1983) Science of wood and forest product. Vysšaja škola, Moscow, Russia

    Google Scholar 

  • Mörlig T, Valinger E (1999) Effect of fertilization and thinning on heartwood area, sapwood area and growth in Scots pine. Scand J For Res 14(5):462–469. doi:10.1080/02827589950154168

    Article  Google Scholar 

  • Mott L, Groom L, Shaler S (2002) Mechanical properties of individual southern pine fibers. Part II. Comparison of earlywood and latewood fibers with respect to tree height and juvenility. Wood Fiber Sci 34(2):221–237

    CAS  Google Scholar 

  • Nekrassova AA (1994) Properties of wood of conifers as a function of the growth conditions. Lesnoe Khozyaistvo 2:22–24

    Google Scholar 

  • Ots K (2000) Morphometric parameters of conifer needles and shoots in the areas near the Kunda cement plant. For Stud 38:158–176

    Google Scholar 

  • Ots K (2002) Impact of air pollution on the growth of conifers in the industrial region of Northeast Estonia. Doctoral Thesis, Estonian Agricultural University, Tartu, Estonia

  • Ots K, Rauk J (1999) Scots pine (Pinus sylvestris L.) and impact of air pollution on it. Dendrological Researches in Estonia I, Tallinn, Estonia, pp 79–88

    Google Scholar 

  • Paavilainen E (1990) Importance of particle size fiber length and fines for the characterization of softwood kraft pulp. Paperi ja Puu 72(5):516–526

    CAS  Google Scholar 

  • Pikk J, Kask R (2004) Mechanical properties of juvenile wood of Scots pine (Pinus sylvestris L.) on Myrtillus forest site type. Bal For 10(1):72–78

    Google Scholar 

  • Pikk J, Kask R, Kuusepuu T, Peterson P (2004) The effect of growth conditions on Scots pine (Pinus sylvestris L.) wood properties. For Stud 40:187–197

    Google Scholar 

  • Polubojarinov OI, Sorokin AM, Fedorov PB (2000) Base density of wood and bark of the forest-forming species of European Russia. Lesnoe Khozyaistvo 5:35–36

    Google Scholar 

  • Rauk J (1995) Bioproductivity. In: Mandre M (ed) Dust pollution and forest ecosystems. A study of conifers in an alkaline environment. Institute of Ecology, Publication 3, Infotrükk, Tallinn, Estonia, pp 119–123

    Google Scholar 

  • Saikku O (1975) The effect of fertilization on the basic density of Scots pine (Pinus sylvestris L.). A densitometric study on the X-ray chart curves of wood. Communicationes Instituti Forestalis Fenniae 85:1–49

    Google Scholar 

  • Seco JIFG, Barra MRD (1996) Growth rate as a predictor of density and mechanical quality of sawn timber from fast growing species. Holz als Roh—und Werkstoff 54(3):171–174

    Article  Google Scholar 

  • Sipi M, Rikala J (2000) Tree stands on peatland, quality of wood raw material and suitability for different use objects. Proceedings of IUFRO congress posters. Malaisia, pp 191–192

  • Skuodene L (2005) Stress of trees and it physiological estimate. Print House Arx Baltica, Kaunas, Lithuania

    Google Scholar 

  • Smith WH (1990) Air pollution and forests. Interaction between air contaminants and forest ecosystems, 2nd edn. Springer, Berlin

    Google Scholar 

  • Staaf H, Tyler G (1995) Effect of acid deposition and tropospheric ozone on forest ecosystems in Sweden. Ecological Bulletins 44. Munksgaard International Publishers Ltd., Copenhagen, Denmark

    Google Scholar 

  • Veermets K (1960) Regularities in technical properties of pine wood. Trans Estonian Agric Acad 17:77–89

    Google Scholar 

  • Verkasalo E, Leban J-M (2002) MOE and MOR in static bending of small clear specimens of Scots pine, Norway spruce and European fir from Finland and France and their prediction for the comparison of wood quality. Paperi ja Puu 84(5):332–340

    Google Scholar 

  • Vjarbila VV, Šleiniss RI (1981) Effect of fertilizer application on the quality of wood in Scots pine stands. Lesnoe Khozyaistvo 12:8–11

    Google Scholar 

  • Wilhelmsson L, Arlinger J, Spangberg K, Lundqvist SO, Grahn T, Hedenberg O, Olsson L (2002) Models for predicting wood properties in stems of Picea abies and Pinus sylvestris in Sweden. Scand J For Res 17(4):330–350. doi:10.1080/02827580260138080

    Article  Google Scholar 

  • Wimmer R (1991) Relations between growth ring parameters and density of Scots pine wood. Holzforschung und Holzverwertung 43(4):79–82

    Google Scholar 

  • Wodzicki TJ (2001) Natural factors affecting wood structure. Wood Sci Technol 35:5–26. doi:10.1007/s002260100085

    Article  CAS  Google Scholar 

  • Zvirbul AP, Nekrassova GN, Polubojarinov OI (1976) Effect of urea fertilization on Pine stands on the wood quality. Lesnoi Zhurnal 6:18–22

    Google Scholar 

Download references

Acknowledgments

This study was supported by the Estonian Ministry of Education and Research (project No. 0432153s02) and by the Estonian University of Life Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Regino Kask.

Additional information

Communicated by S. W. Leavitt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kask, R., Ots, K., Mandre, M. et al. Scots pine (Pinus sylvestris L.) wood properties in an alkaline air pollution environment. Trees 22, 815–823 (2008). https://doi.org/10.1007/s00468-008-0242-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-008-0242-7

Keywords

Navigation