Skip to main content

Advertisement

Log in

Urinary excretion of calcium, phosphate, magnesium, and uric acid in healthy infants and young children. Influence of feeding practices in early infancy

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

Reference values for urinary calcium (Ca) and other solutes/creatinine (Cr) ratios in infants and young children are scarce. Its variation with type of lactation administered, breastfed (BF) or formula (F), is incompletely known.

Methods

A total of 511 spot urine samples from 136 children, aged 6 days to < 5 years, was collected. Urine was collected no fasting in infants < 18 months and first morning fasting in children aged 2.5–4 years. Urinary osmolality, Cr, urea, Ca, phosphate (P), magnesium (Mg), and uric acid (UA) were determined. Values are expressed as solute-to-Cr ratio.

Results

Urinary values were grouped according to the child’s age: 6–17 days (G1), 1–5 months (G2), 6–12 months (G3), 13–18 months (G4), and 2.5–4 years (G5). G1 was excluded; Ca/Cr and UA/Cr (95th percentile) decreased with age (G2 vs. G5) from 1.64 to 0.39 and 2.33 to 0.83 mg/mg, respectively. The P/Cr median rises significantly with age from 0.31 (G2) to 1.66 mg/mg (G5). Mg/Cr was similar in all groups (median 0.20, 95th percentile 0.37 mg/mg). Ca/Cr (95th percentile) of BF infants was 1.80 mg/mg (< 3 months) and 1.63 mg/mg (3–5 months), much higher than F infants (0.93 and 0.90 mg/mg, respectively). P/Cr and P/Ca were lower in BF infants.

Conclusions

Values for urinary Ca/Cr, P/Cr, Mg/Cr, and UA/Cr in infants and children < 5 years were updated. BF infants < 6 months showed higher Ca/Cr and lower P/Cr than F infants. New cutoff values to diagnose hypercalciuria in infants < 6 months, according to the type of lactation, are proposed.

Graphical abstract

A higher resolution version of the Graphical abstract is available as Supplementary information

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Nordin BEC (1959) Assessment of calcium excretion from the urinary calcium/creatinine ratio. Lancet 74:368–371

    Article  Google Scholar 

  2. Ghazali S, Barratt TM (1974) Urinary excretion of calcium and magnesium in children. Arch Dis Child 49:97–101. https://doi.org/10.1136/adc.49.2.97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hernández Marco R, Nuñez Gomez F, Martinez Costa C, Fons Moreno J, Peris Vidal A, Brines Solanes J (1988) Urinary excretion of calcium, magnesium, uric acid and oxalic acid in normal children. An Esp Pediatr 29:99–104

    PubMed  Google Scholar 

  4. García Nieto VM, Luis Yanes MI, Arango Sancho P (2014) Basic renal function tests reviewed. Is the 24-hour urine collection on the decline in paediatrics? An Pediatr (Barc) 80:275–277. https://doi.org/10.1016/j.anpedi.2014.03.009

    Article  PubMed  Google Scholar 

  5. Sargent JD, Stukel TA, Kresel J, Klein RZ (1993) Normal values for random urinary calcium to creatinine ratios in infancy. J Pediatr 123:393–397. https://doi.org/10.1016/S0022-3476(05)81738-X

    Article  CAS  PubMed  Google Scholar 

  6. Ariceta G, Rodriguez Soriano J, Vallo A (1996) Renal magnesium handling in infants and children. Acta Paediatr 85:1019–1023

    Article  CAS  PubMed  Google Scholar 

  7. Matos V, Van Melle G, Boulat O, Markert M, Bachmann C, Guignard JP (1997) Urinary phosphate/creatinine, calcium/creatinine and magnesium/creatinine ratios in a healthy pediatric population. J Pediatr 131:252–257. https://doi.org/10.1016/S0022-3476(97)70162-8

    Article  CAS  PubMed  Google Scholar 

  8. Matos V, Van Melle G, Werner D, Bardy D, Guignard JP (1999) Urinary oxalate and urate to creatinine ratios in a healthy pediatric population. Am J Kidney Dis 34:e1. https://doi.org/10.1053/AJKD034000e6

    Article  CAS  PubMed  Google Scholar 

  9. Vachvanichsanong P, Lebel L, Moore E (2000) Urinary calcium excretion in healthy Thai children. Pediatr Nephrol 14:847–850. https://doi.org/10.1007/s004679900229

    Article  CAS  PubMed  Google Scholar 

  10. So NP, Osorio AV, Simon SD, Alon US (2001) Normal urinary calcium/creatinine ratios in African-American and Caucasian children. Pediatr Nephrol 16:133–139. https://doi.org/10.1007/s004670000510

    Article  CAS  PubMed  Google Scholar 

  11. Ceran O, Akin M, Aktürk Z, Ozkozaci T (2003) Normal urinary calcium/creatinine ratios in Turkish children. Indian Pediatr 40:884–887

    PubMed  Google Scholar 

  12. Safarinejad MR (1993) Urinary mineral excretion in healthy Iranian children. Pediatr Nephrol 18:140–144. https://doi.org/10.1007/s00467-002-1020-1

    Article  Google Scholar 

  13. Erol I, Buyan N, Özkaya O, Sahin F, Beyazova SO, Hasanoglu E (2009) Reference values for urinary calcium, sodium and potassium in healthy newborns, infants and children. Turk J Pediatr 51:6–13

    PubMed  Google Scholar 

  14. Poyrazoglu HM, Dussunsel R, Yazici C, Durmaz H, Dursum I, Sahin H, Gündüz Z, Gürgöze M (2009) Urinary uric acid:creatinine ratios in healthy Turkish children. Pediatr Int 51:526–529. https://doi.org/10.1111/j.1442-200X.2008.02785.x

    Article  CAS  PubMed  Google Scholar 

  15. Ferré N, Rubio-Torrents C, Luque V, Closa-Monasterolo R, Grote V, Koletzko B, Socha P, Gruszfeld D, Langhendries JP, Sengier A, Verduci E, Escribano J, European Childhood Obesity Project Group (2017) Influence of feeding types during the first months of life on calciuria levels in healthy infants: a secondary analysis from a randomized clinical trial. Ann Nutr Metab 70:139. https://doi.org/10.1159/000468156

    Article  CAS  Google Scholar 

  16. McCrory WW, Forman CW, McNamara H, Barnett HL (1952) Renal excretion of inorganic phosphate in newborn infants. J Clin Invest 31:357–366. https://doi.org/10.1172/JCI102616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Reusz GS, Dobos M, Byrd D, Sallay P, Miltényi M, Tulassay T (1995) Urinary calcium and oxalate excretion in children. Pediatr Nephrol 9:39–44. https://doi.org/10.1007/BF00858966

    Article  CAS  PubMed  Google Scholar 

  18. Bistarakis L, Voskaki I, Lambadaridis J, Sereti H, Sbyrakis S (1986) Renal handling of phosphate in the first months of life. Arch Dis Child 61:677–681. https://doi.org/10.1136/adc.61.7.677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hillman LS, Chow W, Salmons S, Weaver E, Erickson M, Hansen J (1988) Vitamin D metabolism, mineral homeostasis, and bone mineralization in term infants fed human milk, cow milk-based formula, or soy-based formula. J Pediatr 112:864–874. https://doi.org/10.1016/s0022-3476(88)80206-3

    Article  CAS  PubMed  Google Scholar 

  20. Ubalde E, García de Jalón A, Abad A, Loris C (1988) Urinary excretion of calcium in healthy children. Multicenter collaborative study. Nefrologia 3:224–230

    Google Scholar 

  21. Butani L, Kalia A (2004) Idiopathic hypercalciuria in children - how valid are the existing diagnostic criteria? Pediatr Nephrol 19:577–582. https://doi.org/10.1007/s00467-004-1470-8

    Article  PubMed  Google Scholar 

  22. Hoppe B, Hesse A, Neuhaus T, Fanconi S, Blau N, Roth B, Leumann E (1997) Influence of nutrition on urinary oxalate and calcium in preterm and term infants. Pediatr Nephrol 11:687–690. https://doi.org/10.1007/s004670050366

    Article  CAS  PubMed  Google Scholar 

  23. Ozkaya O, Buyan N, Erol I, Atalay Y, Beyazova U, Sahin F, Söylemezoglu O (2005) The relationship between urinary calcium, sodium, and potassium excretion in full-term healthy newborns. Turk J Pediatr 47:39–45

    PubMed  Google Scholar 

  24. Saez-Torres C, Rodrigo D, Grases F, García-Raja AM, Gómez C, Lumbreras J, Frontera G (2014) Urinary excretion of calcium, magnesium, phosphate, citrate, oxalate, and uric acid by healthy schoolchildren using a 12-h collection protocol. Pediatr Nephrol 29:1201–1208. https://doi.org/10.1007/s00467-014-2755-1

    Article  PubMed  Google Scholar 

  25. El Mallah C, Ghattas H, Shatila D, Francis S, Merhi K, Hlais S, Toufeili I, Obeid O (2016) Urinary magnesium, calcium, and phosphorus to creatinine ratios of healthy elementary school Lebanese children. Biol Trace Elem Res 170:264–270. https://doi.org/10.1007/s12011-015-0484-3

    Article  CAS  PubMed  Google Scholar 

  26. Paunier L, Borgeaud M, Wyss M (1970) Urinary excretion of magnesium and calcium in normal children. Helv Paediatr Acta 25:577–584

    CAS  PubMed  Google Scholar 

  27. Simecková A, Zamrazil V, Cerovska J (1998) Calciuria, magnesuria and creatininuria-relation to age. Physiol Res 47:35–40

    PubMed  Google Scholar 

  28. Yilmaz N, Yüksel S, Altintas F, Kocyigit A (2021) Nephrolithiasis during the first 6 months of life in exclusively breastfed infants. Pediatr Nephrol 36:1227–1231. https://doi.org/10.1007/s00467-020-04815-w

    Article  PubMed  Google Scholar 

  29. Ariceta G, Rodríguez-Soriano J, Vallo A (1995) Magnesium homeostasis in premature and full-term neonates. Pediatr Nephrol 9:423–427. https://doi.org/10.1007/BF00866716

    Article  CAS  PubMed  Google Scholar 

  30. Institute of Medicine (1997) Dietary reference intakes for calcium, phosphorus, magnesium, vitamin D, and fluoride. National Academies Press, Washington, DC

    Google Scholar 

  31. Bellos I, Fitrou G, Pergialiotis V, Perrea DN, Papantoniou N, Daskalakis G (2019) Random urine uric acid to creatinine and prediction of perinatal asphyxia: a meta-analysis. J Matern Fetal Neonatal Med 32:3864–3870. https://doi.org/10.1080/14767058.2018.1471677

    Article  CAS  PubMed  Google Scholar 

  32. van der Watt G, Omar F, Brink A, McCulloch M (2016) Laboratory investigation of the child with suspected renal disease. In: Avner ED, Harmon WE, Niaudet P, Yoshikawa N, Emma F, Goldstein SL (eds) Pediatric Nephrology, 7th edn. Springer, Heidelberg, pp 613–636

    Chapter  Google Scholar 

  33. García Nieto VM, Moraleda T, Hernández González MJ (2021) Renal lithiasis in history. Diagnostic approach to renal lithiasis in childhood. Metabolic abnormalities causing stones. The concept of prelithiasis. Preventive treatment. In: Exeni R, García-Nieto V, Medeiros M, Santos F (eds) Paediatric nephrology. University of Oviedo and Autonomous University of Mexico, Oviedo, pp 991–997

    Google Scholar 

  34. Sanchez Bayle M, Martínez Jiménez AL, Ruiz-Jarabo C, Asensio J, Amaiz P, Vila S (1992) Urinary excretion of uric acid in childhood and adolescence. Nefrologia 12:239–243

    Google Scholar 

  35. Chen YH, Lee AJ, Chen CH, Chesney RW, Stapleton FB, Roy S 3rd (1994) Urinary mineral excretion among normal Taiwanese children. Pediatr Nephrol 8:36–39. https://doi.org/10.1007/BF00868256

    Article  CAS  PubMed  Google Scholar 

  36. Stapleton FB (1978) Uric acid excretion in normal children. J Pediatr 92:911–914. https://doi.org/10.1016/S0022-3476(78)80359-X

    Article  CAS  PubMed  Google Scholar 

  37. Vázquez Martul M, Sánchez Bayle M, Écija JL, Montalvo N, Sánchez Medina D, Otero J (1988) Normal values of urinary excretion of uric acid in childhood. Nefrologia 8:250–254

    Google Scholar 

  38. Karlén J, Aperia A, Zetterström R (1985) Renal excretion of calcium and phosphate in preterm and term infants. J Pediatr 106:814–819. https://doi.org/10.1016/s0022-3476(85)80364-4

    Article  PubMed  Google Scholar 

  39. Fomon SJ, Nelson SE (1993) Calcium, phosphorus, magnesium, and sulfur. In: Fomon SJ (ed) Nutrition in normal infants. Mosby-Yearbook Inc, St. Louis, pp 192–216

    Google Scholar 

  40. Mathes M, Maas C, Bleeker C, Vek J, Bernhard W, Peter A, Poets CF, Franz AR (2018) Effect of increased enteral protein intake on plasma and urinary urea concentrations in preterm infants born at <32 weeks gestation and <1500 g birth weight enrolled in a randomized controlled trial - a secondary analysis. BMC Pediatr 18:154. https://doi.org/10.1186/s12887-018-1136-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rowe J, Rowe D, Horak E, Spackman T, Saltzman R, Robinson S, Philipps RJ (1984) Hypophosphatemia and hypercalciuria in small premature infants fed human milk: evidence for inadequate dietary phosphorus. J Pediatr 104:112–117. https://doi.org/10.1016/s0022-3476(84)80606-x

    Article  CAS  PubMed  Google Scholar 

  42. Hillman LS (1990) Mineral and vitamin D adequacy in infants fed human milk or formula between 6 and 12 months of age. J Pediatr 117:S134-142. https://doi.org/10.1016/s0022-3476(05)80011-3

    Article  CAS  PubMed  Google Scholar 

  43. Dror DK, Allen LH (2018) Overview of nutrients in human milk. Adv Nutr 9(Suppl 1):278S-294S. https://doi.org/10.1093/advances/nmy022

    Article  PubMed  PubMed Central  Google Scholar 

  44. Academy American, of Pediatrics. Committee on Nutrition, (1998) Pediatric Nutrition Handbook, 4th edn. American Academy of Pediatrics, Elk Grove Village, pp 655–658

    Google Scholar 

  45. ESPGHAN Committee on Nutrition, Agostoni C, Braegger C, Decsi T, Kolacek S, Koletzko B, Michaelsen KF, Mihatsch W, Moreno LA, Puntis J, Shamir R, Szjewska H, Turck D, van Goudoever J (2009) Breast-feeding: a commentary by the ESPGHAN Committee on Nutrition. J Pediatr Gastroenterol Nutr 49:125. https://doi.org/10.1097/MPG.0b013e31819f1e05

    Article  Google Scholar 

  46. Metz MP (2006) Determining urinary calcium/creatinine cut-offs for the paediatric population using published data. Ann Clin Biochem 43:398–401. https://doi.org/10.1258/000456306778520106

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A. Peris Vidal and R. Hernández contributed to the study conception and design. Material preparation and data collection were performed by A. Peris Vidal and statistical analysis by R. Hernández. The first draft of the manuscript was written by A. Peris Vidal and R. Hernández, and all authors commented on the previous versions of the manuscript. All authors interpreted the data, revised the manuscript, provided intellectual content, and approved the submitted version.

Corresponding author

Correspondence to Amelia Peris Vidal.

Ethics declarations

Ethics approval

The procedures used in this study adhere to the tenets of the Declaration of Helsinki. Approval was obtained from the Ethics Committee for Clinical Research of the Hospital Clínico Universitario, Valencia, Spain.

Consent to participate

Written informed consent was obtained from the parents of the patients.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Graphical abstract (PPTX 1056 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peris Vidal, A., Ferrando Monleón, S., Marín Serra, J. et al. Urinary excretion of calcium, phosphate, magnesium, and uric acid in healthy infants and young children. Influence of feeding practices in early infancy. Pediatr Nephrol 39, 761–770 (2024). https://doi.org/10.1007/s00467-023-06145-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-023-06145-z

Keywords

Navigation