Skip to main content

Advertisement

Log in

Long-term treatment of chronic kidney disease patients with anemia using hypoxia-inducible factor prolyl hydroxylase inhibitors: potential concerns

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Hypoxia-inducible factor prolyl hydroxylase inhibitors (HIF-PHIs) have been approved in several countries as a supplement or even an alternative to the clinical treatment of anemia in patients with chronic kidney disease (CKD). Activation of HIF by HIF-PHIs effectively increases hemoglobin (Hb) level in CKD patients by inducing multiple HIF downstream signaling pathways. This indicates that HIF-PHIs have effects beyond erythropoietin, while their potential benefits and risks should be necessarily assessed. Multiple clinical trials have largely demonstrated the efficacy and safety of HIF-PHIs in the short-term treatment of anemia. However, in terms of long-term administration, especially over 1 year, the benefits and risks of HIF-PHIs still need to be assessed. Particular attention should be paid to the risk of kidney disease progression, cardiovascular events, retinal diseases, and tumor risk. This review aims to summarize the current potential risks and benefits of HIF-PHIs in CKD patients with anemia and further discuss the mechanism of action and pharmacological properties of HIF-PHIs, in order to provide direction and theoretical support for future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lee KH, Park E, Choi HJ, Kang HG, Ha IS, Cheong HI, Park YS, Cho H, Han KH, Kim SH, Cho MH, Lee JH, Shin JI (2019) Anemia and iron deficiency in children with chronic kidney disease (CKD): data from the Know-Ped CKD Study. J Clin Med 8:152. https://doi.org/10.3390/jcm8020152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sofue T, Nakagawa N, Kanda E, Nagasu H, Matsushita K, Nangaku M, Maruyama S, Wada T, Terada Y, Yamagata K, Narita I, Yanagita M, Sugiyama H, Shigematsu T, Ito T, Tamura K, Isaka Y, Okada H, Tsuruya K, Yokoyama H, Nakashima N, Kataoka H, Ohe K, Okada M, Kashihara N (2020) Prevalence of anemia in patients with chronic kidney disease in Japan: a nationwide, cross-sectional cohort study using data from the Japan Chronic Kidney Disease Database (J-CKD-DB). PLoS One 15:e0236132. https://doi.org/10.1371/journal.pone.0236132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hanna RM, Streja E, Kalantar-Zadeh K (2021) Burden of anemia in chronic kidney disease: beyond erythropoietin. Adv Ther 38:52–75. https://doi.org/10.1007/s12325-020-01524-6

    Article  CAS  PubMed  Google Scholar 

  4. Atkinson MA, Warady BA (2018) Anemia in chronic kidney disease. Pediatr Nephrol 33:227–238. https://doi.org/10.1007/s00467-017-3663-y

    Article  PubMed  Google Scholar 

  5. Yap DYH, McMahon LP, Hao CM, Hu N, Okada H, Suzuki Y, Kim SG, Lim SK, Vareesangthip K, Hung CC, Nangaku M (2021) Recommendations by the Asian Pacific society of nephrology (APSN) on the appropriate use of HIF-PH inhibitors. Nephrology (Carlton) 26:105–118. https://doi.org/10.1111/nep.13835

    Article  PubMed  Google Scholar 

  6. Shih HM, Wu CJ, Lin SL (2018) Physiology and pathophysiology of renal erythropoietin-producing cells. J Formos Med Assoc 117:955–963. https://doi.org/10.1016/j.jfma.2018.03.017

    Article  CAS  PubMed  Google Scholar 

  7. Mikhail A, Brown C, Williams JA, Mathrani V, Shrivastava R, Evans J, Isaac H, Bhandari S (2017) Renal association clinical practice guideline on anaemia of chronic kidney disease. BMC Nephrol 18:345. https://doi.org/10.1186/s12882-017-0688-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mima A (2021) Hypoxia-inducible factor-prolyl hydroxylase inhibitors for renal anemia in chronic kidney disease: advantages and disadvantages. Eur J Pharmacol 912:174583. https://doi.org/10.1016/j.ejphar.2021.174583

    Article  CAS  PubMed  Google Scholar 

  9. Sanghani NS, Haase VH (2019) Hypoxia-inducible factor activators in renal anemia: current clinical experience. Adv Chronic Kidney Dis 26:253–266. https://doi.org/10.1053/j.ackd.2019.04.004

    Article  PubMed  PubMed Central  Google Scholar 

  10. He L, Wei Q, Liu J, Yi M, Liu Y, Liu H, Sun L, Peng Y, Liu F, Venkatachalam MA, Dong Z (2017) AKI on CKD: heightened injury, suppressed repair, and the underlying mechanisms. Kidney Int 92:1071–1083. https://doi.org/10.1016/j.kint.2017.06.030

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kobayashi H, Davidoff O, Pujari-Palmer S, Drevin M, Haase VH (2022) EPO synthesis induced by HIF-PHD inhibition is dependent on myofibroblast transdifferentiation and colocalizes with non-injured nephron segments in murine kidney fibrosis. Acta Physiol (Oxf) 235:e13826. https://doi.org/10.1111/apha.13826

    Article  CAS  PubMed  Google Scholar 

  12. Zhao H, Han Y, Jiang N, Li C, Yang M, Xiao Y, Wei L, Xiong X, Yang J, Tang C, Xiao L, Liu F, Liu Y, Sun L (2021) Effects of HIF-1α on renal fibrosis in cisplatin-induced chronic kidney disease. Clin Sci (Lond) 135:1273–1288. https://doi.org/10.1042/CS20210061

    Article  CAS  PubMed  Google Scholar 

  13. Rosenberger C, Mandriota S, Jürgensen JS, Wiesener MS, Hörstrup JH, Frei U, Ratcliffe PJ, Maxwell PH, Bachmann S, Eckardt KU (2002) Expression of hypoxia-inducible factor-1alpha and -2alpha in hypoxic and ischemic rat kidneys. J Am Soc Nephrol 13:1721–1732. https://doi.org/10.1097/01.asn.0000017223.49823.2a

    Article  CAS  PubMed  Google Scholar 

  14. Higgins DF, Kimura K, Bernhardt WM, Shrimanker N, Akai Y, Hohenstein B, Saito Y, Johnson RS, Kretzler M, Cohen CD, Eckardt KU, Iwano M, Haase VH (2007) Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. J Clin Invest 117:3810–3820. https://doi.org/10.1172/JCI30487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kong KH, Oh HJ, Lim BJ, Kim M, Han KH, Choi YH, Kwon K, Nam BY, Park KS, Park JT, Han SH, Yoo TH, Lee S, Kim SJ, Kang DH, Choi KB, Eremina V, Quaggin SE, Ryu DR, Kang SW (2017) Selective tubular activation of hypoxia-inducible factor-2α has dual effects on renal fibrosis. Sci Rep 7:11351. https://doi.org/10.1038/s41598-017-11829-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bartoszewski R, Moszyńska A, Serocki M, Cabaj A, Polten A, Ochocka R, Dell’Italia L, Bartoszewska S, Króliczewski J, Dąbrowski M, Collawn JF (2019) Primary endothelial cell-specific regulation of hypoxia-inducible factor (HIF)-1 and HIF-2 and their target gene expression profiles during hypoxia. FASEB J 33:7929–7941. https://doi.org/10.1096/fj.201802650RR

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kapitsinou PP, Sano H, Michael M, Kobayashi H, Davidoff O, Bian A, Yao B, Zhang MZ, Harris RC, Duffy KJ, Erickson-Miller CL, Sutton TA, Haase VH (2014) Endothelial HIF-2 mediates protection and recovery from ischemic kidney injury. J Clin Invest 124:2396–2409. https://doi.org/10.1172/JCI69073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kabei K, Tateishi Y, Shiota M, Osada-Oka M, Nishide S, Uchida J, Nakatani T, Matsunaga S, Yamaguchi T, Tomita S, Miura K (2020) Effects of orally active hypoxia inducible factor alpha prolyl hydroxylase inhibitor, FG4592 on renal fibrogenic potential in mouse unilateral ureteral obstruction model. J Pharmacol Sci 142:93–100. https://doi.org/10.1016/j.jphs.2019.12.002

    Article  CAS  PubMed  Google Scholar 

  19. Yu X, Fang Y, Liu H, Zhu J, Zou J, Xu X, Jiang S, Ding X (2012) The balance of beneficial and deleterious effects of hypoxia-inducible factor activation by prolyl hydroxylase inhibitor in rat remnant kidney depends on the timing of administration. Nephrol Dial Transplant 27:3110–3119. https://doi.org/10.1093/ndt/gfr754

    Article  CAS  PubMed  Google Scholar 

  20. Noonan ML, Clinkenbeard EL, Ni P, Swallow EA, Tippen SP, Agoro R, Allen MR, White KE (2020) Erythropoietin and a hypoxia-inducible factor prolyl hydroxylase inhibitor (HIF-PHDi) lowers FGF23 in a model of chronic kidney disease (CKD). Physiol Rep 8:e14434. https://doi.org/10.14814/phy2.14434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schley G, Klanke B, Kalucka J, Schatz V, Daniel C, Mayer M, Goppelt-Struebe M, Herrmann M, Thorsteinsdottir M, Palsson R, Beneke A, Katschinski DM, Burzlaff N, Eckardt KU, Weidemann A, Jantsch J, Willam C (2019) Mononuclear phagocytes orchestrate prolyl hydroxylase inhibition-mediated renoprotection in chronic tubulointerstitial nephritis. Kidney Int 96:378–396. https://doi.org/10.1016/j.kint.2019.02.016

    Article  CAS  PubMed  Google Scholar 

  22. Zielniok K, Burdzinska A, Kaleta B, Zagozdzon R, Paczek L (2020) Vadadustat, a HIF prolyl hydroxylase inhibitor, improves immunomodulatory properties of human mesenchymal stromal cells. Cells 9:2396. https://doi.org/10.3390/cells9112396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Poloznikov AA, Nersisyan SA, Hushpulian DM, Kazakov EH, Tonevitsky AG, Kazakov SV, Vechorko VI, Nikulin SV, Makarova JA, Gazaryan IG (2021) HIF prolyl hydroxylase inhibitors for COVID-19 treatment: pros and cons. Front Pharmacol 11:621054. https://doi.org/10.3389/fphar.2020.621054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Noonan ML, Ni P, Agoro R, Sacks SA, Swallow EA, Wheeler JA, Clinkenbeard EL, Capitano ML, Prideaux M, Atkins GJ, Thompson WR, Allen MR, Broxmeyer HE, White KE (2021) The HIF-PHI BAY 85–3934 (molidustat) improves anemia and is associated with reduced levels of circulating FGF23 in a CKD mouse model. J Bone Miner Res 36:1117–1130. https://doi.org/10.1002/jbmr.4272

    Article  CAS  PubMed  Google Scholar 

  25. Akizawa T, Nangaku M, Yamaguchi T, Koretomo R, Maeda K, Yamada O, Hirakata H (2022) Two long-term phase 3 studies of enarodustat (JTZ-951) in Japanese anemic patients with chronic kidney disease not on dialysis or on maintenance hemodialysis: SYMPHONY ND-Long and HD-Long studies. Ther Apher Dial 26:345–356. https://doi.org/10.1111/1744-9987.13724

    Article  CAS  PubMed  Google Scholar 

  26. Haase VH (2021) Hypoxia-inducible factor-prolyl hydroxylase inhibitors in the treatment of anemia of chronic kidney disease. Kidney Int Suppl 11:8–25. https://doi.org/10.1016/j.kisu.2020.12.002

    Article  Google Scholar 

  27. Sulser P, Pickel C, Günter J, Leissing TM, Crean D, Schofield CJ, Wenger RH, Scholz CC (2020) HIF hydroxylase inhibitors decrease cellular oxygen consumption depending on their selectivity. FASEB J 34:2344–2358. https://doi.org/10.1096/fj.201902240R

    Article  CAS  PubMed  Google Scholar 

  28. Kurzhagen JT, Dellepiane S, Cantaluppi V, Rabb H (2020) AKI: an increasingly recognized risk factor for CKD development and progression. J Nephrol 33:1171–1187. https://doi.org/10.1007/s40620-020-00793-2

    Article  CAS  PubMed  Google Scholar 

  29. Naganuma T, Iwai T, Takemoto Y, Uchida J (2022) Experience with the use of a novel agent, hypoxia-inducible factor prolyl hydroxylase inhibitor, for posttransplant anemia in renal transplant recipients: a case report. Transplant Proc 54:544–548. https://doi.org/10.1016/j.transproceed.2021.10.022

    Article  CAS  PubMed  Google Scholar 

  30. Ding ZY, Tang TT, Li ZL, Cao JY, Lv LL, Wen Y, Wang B, Liu BC (2022) Therapeutic effect of extracellular vesicles derived from HIF prolyl hydroxylase domain enzyme inhibitor-treated cells on renal ischemia/reperfusion injury. Kidney Dis (Basel) 8:206–216. https://doi.org/10.1159/000522584

    Article  PubMed  Google Scholar 

  31. Miao AF, Liang JX, Yao L, Han JL, Zhou LJ (2021) Hypoxia-inducible factor prolyl hydroxylase inhibitor roxadustat (FG-4592) protects against renal ischemia/reperfusion injury by inhibiting inflammation. Ren Fail 43:803–810. https://doi.org/10.1080/0886022X.2021.1915801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang M, Dong R, Yuan J, Da J, Zha Y, Long Y (2022) Roxadustat (FG-4592) protects against ischaemia/reperfusion-induced acute kidney injury through inhibiting the mitochondrial damage pathway in mice. Clin Exp Pharmacol Physiol 49:311–318. https://doi.org/10.1111/1440-1681.13601

    Article  CAS  PubMed  Google Scholar 

  33. Ito M, Tanaka T, Ishii T, Wakashima T, Fukui K, Nangaku M (2020) Prolyl hydroxylase inhibition protects the kidneys from ischemia via upregulation of glycogen storage. Kidney Int 97:687–701. https://doi.org/10.1016/j.kint.2019.10.020

    Article  CAS  PubMed  Google Scholar 

  34. Wu M, Chen W, Miao M, Jin Q, Zhang S, Bai M, Fan J, Zhang Y, Zhang A, Jia Z, Huang S (2021) Anti-anemia drug FG4592 retards the AKI-to-CKD transition by improving vascular regeneration and antioxidative capability. Clin Sci (Lond) 135:1707–1726. https://doi.org/10.1042/CS20210100

    Article  CAS  PubMed  Google Scholar 

  35. Gafter-Gvili A, Gafter U (2019) Posttransplantation anemia in kidney transplant recipients. Acta Haematol 142:37–43. https://doi.org/10.1159/000496140

    Article  CAS  PubMed  Google Scholar 

  36. Rosenberger C, Pratschke J, Rudolph B, Heyman SN, Schindler R, Babel N, Eckardt KU, Frei U, Rosen S, Reinke P (2007) Immunohistochemical detection of hypoxia-inducible factor-1alpha in human renal allograft biopsies. J Am Soc Nephrol 18:343–351. https://doi.org/10.1681/ASN.2006070792

    Article  CAS  PubMed  Google Scholar 

  37. Bernhardt WM, Gottmann U, Doyon F, Buchholz B, Campean V, Schödel J, Reisenbuechler A, Klaus S, Arend M, Flippin L, Willam C, Wiesener MS, Yard B, Warnecke C, Eckardt KU (2009) Donor treatment with a PHD-inhibitor activating HIFs prevents graft injury and prolongs survival in an allogenic kidney transplant model. Proc Natl Acad Sci U S A 106:21276–21281. https://doi.org/10.1073/pnas.0903978106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Faleo G, Neto JS, Kohmoto J, Tomiyama K, Shimizu H, Takahashi T, Wang Y, Sugimoto R, Choi AM, Stolz DB, Carrieri G, McCurry KR, Murase N, Nakao A (2008) Carbon monoxide ameliorates renal cold ischemia-reperfusion injury with an upregulation of vascular endothelial growth factor by activation of hypoxia-inducible factor. Transplantation 85:1833–1840. https://doi.org/10.1097/TP.0b013e31817c6f63

    Article  CAS  PubMed  Google Scholar 

  39. Zhang J, Han C, Dai H, Hou J, Dong Y, Cui X, Xu L, Zhang M, Xia Q (2016) Hypoxia-inducible factor-2α limits natural killer T cell cytotoxicity in renal ischemia/reperfusion injury. J Am Soc Nephrol 27:92–106. https://doi.org/10.1681/ASN.2014121248

    Article  CAS  PubMed  Google Scholar 

  40. Bruneau S, Wedel J, Fakhouri F, Nakayama H, Boneschansker L, Irimia D, Daly KP, Briscoe DM (2016) Translational implications of endothelial cell dysfunction in association with chronic allograft rejection. Pediatr Nephrol 31:41–51. https://doi.org/10.1007/s00467-015-3094-6

    Article  PubMed  Google Scholar 

  41. Walther CP, Nambi V, Hanania NA, Navaneethan SD (2020) Diagnosis and management of pulmonary hypertension in patients with CKD. Am J Kidney Dis 75:935–945. https://doi.org/10.1053/j.ajkd.2019.12.005

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zeng Y, Liu H, Kang K, Wang Z, Hui G, Zhang X, Zhong J, Peng W, Ramchandran R, Raj JU, Gou D (2015) Hypoxia inducible factor-1 mediates expression of miR-322: potential role in proliferation and migration of pulmonary arterial smooth muscle cells. Sci Rep 5:12098. https://doi.org/10.1038/srep12098

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hu CJ, Poth JM, Zhang H, Flockton A, Laux A, Kumar S, McKeon B, Mouradian G, Li M, Riddle S, Pugliese SC, Brown RD, Wallace EM, Graham BB, Frid MG, Stenmark KR (2019) Suppression of HIF2 signalling attenuates the initiation of hypoxia-induced pulmonary hypertension. Eur Respir J 54:1900378. https://doi.org/10.1183/13993003.00378-2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Brusselmans K, Compernolle V, Tjwa M, Wiesener MS, Maxwell PH, Collen D, Carmeliet P (2003) Heterozygous deficiency of hypoxia-inducible factor-2alpha protects mice against pulmonary hypertension and right ventricular dysfunction during prolonged hypoxia. J Clin Invest 111:1519–1527. https://doi.org/10.1172/JCI15496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tang H, Babicheva A, McDermott KM, Gu Y, Ayon RJ, Song S, Wang Z, Gupta A, Zhou T, Sun X, Dash S, Wang Z, Balistrieri A, Zheng Q, Cordery AG, Desai AA, Rischard F, Khalpey Z, Wang J, Black SM, Garcia JGN, Makino A, Yuan JX (2018) Endothelial HIF-2α contributes to severe pulmonary hypertension due to endothelial-to-mesenchymal transition. Am J Physiol Lung Cell Mol Physiol 314:L256–L275. https://doi.org/10.1152/ajplung.00096.2017

    Article  CAS  PubMed  Google Scholar 

  46. Bryant AJ, Carrick RP, McConaha ME, Jones BR, Shay SD, Moore CS, Blackwell TR, Gladson S, Penner NL, Burman A, Tanjore H, Hemnes AR, Karwandyar AK, Polosukhin VV, Talati MA, Dong HJ, Gleaves LA, Carrier EJ, Gaskill C, Scott EW, Majka SM, Fessel JP, Haase VH, West JD, Blackwell TS, Lawson WE (2016) Endothelial HIF signaling regulates pulmonary fibrosis-associated pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 310:L249-262. https://doi.org/10.1152/ajplung.00258.2015

    Article  PubMed  Google Scholar 

  47. Dunham-Snary KJ, Wu D, Sykes EA, Thakrar A, Parlow LRG, Mewburn JD, Parlow JL, Archer SL (2017) Hypoxic pulmonary vasoconstriction: from molecular mechanisms to medicine. Chest 151:181–192. https://doi.org/10.1016/j.chest.2016.09.001

    Article  PubMed  Google Scholar 

  48. Luo Y, Teng X, Zhang L, Chen J, Liu Z, Chen X, Zhao S, Yang S, Feng J, Yan X (2019) CD146-HIF-1α hypoxic reprogramming drives vascular remodeling and pulmonary arterial hypertension. Nat Commun 10:3551. https://doi.org/10.1038/s41467-019-11500-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Novoyatleva T, Kojonazarov B, Owczarek A, Veeroju S, Rai N, Henneke I, Böhm M, Grimminger F, Ghofrani HA, Seeger W, Weissmann N, Schermuly RT (2019) Evidence for the fucoidan/P-selectin axis as a therapeutic target in hypoxia-induced pulmonary hypertension. Am J Respir Crit Care Med 199:1407–1420. https://doi.org/10.1164/rccm.201806-1170OC

    Article  CAS  PubMed  Google Scholar 

  50. Kim YM, Barnes EA, Alvira CM, Ying L, Reddy S, Cornfield DN (2013) Hypoxia-inducible factor-1α in pulmonary artery smooth muscle cells lowers vascular tone by decreasing myosin light chain phosphorylation. Circ Res 112:1230–1233. https://doi.org/10.1161/CIRCRESAHA.112.300646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Formenti F, Beer PA, Croft QP, Dorrington KL, Gale DP, Lappin TR, Lucas GS, Maher ER, Maxwell PH, McMullin MF, O’Connor DF, Percy MJ, Pugh CW, Ratcliffe PJ, Smith TG, Talbot NP, Robbins PA (2011) Cardiopulmonary function in two human disorders of the hypoxia-inducible factor (HIF) pathway: von Hippel-Lindau disease and HIF-2alpha gain-of-function mutation. FASEB J 25:2001–2011. https://doi.org/10.1096/fj.10-177378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tarbell J, Mahmoud M, Corti A, Cardoso L, Caro C (2020) The role of oxygen transport in atherosclerosis and vascular disease. J R Soc Interface 17:20190732. https://doi.org/10.1098/rsif.2019.0732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Thomas C, Leleu D, Masson D (2022) Cholesterol and HIF-1α: dangerous liaisons in atherosclerosis. Front Immunol 13:868958. https://doi.org/10.3389/fimmu.2022.868958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Evans CE (2019) Hypoxia and HIF activation as a possible link between sepsis and thrombosis. Thromb J 17:16. https://doi.org/10.1186/s12959-019-0205-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Knutson AK, Williams AL, Boisvert WA, Shohet RV (2021) HIF in the heart: development, metabolism, ischemia, and atherosclerosis. J Clin Invest 131:e137557. https://doi.org/10.1172/JCI137557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Qi J, Pan T, You T, Tang Y, Chu T, Chen J, Fan Y, Hu S, Yang F, Ruan C, Wu D, Han Y (2022) Upregulation of HIF-1α contributes to complement activation in transplantation-associated thrombotic microangiopathy. Br J Haematol 199:603–615. https://doi.org/10.1111/bjh.18377

    Article  CAS  PubMed  Google Scholar 

  57. Marchetti M (2020) COVID-19-driven endothelial damage: complement, HIF-1, and ABL2 are potential pathways of damage and targets for cure. Ann Hematol 99:1701–1707. https://doi.org/10.1007/s00277-020-04138-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Stavik B, Espada S, Cui XY, Iversen N, Holm S, Mowinkel MC, Halvorsen B, Skretting G, Sandset PM (2016) EPAS1/HIF-2 alpha-mediated downregulation of tissue factor pathway inhibitor leads to a pro-thrombotic potential in endothelial cells. Biochim Biophys Acta 1862:670–678. https://doi.org/10.1016/j.bbadis.2016.01.017

    Article  CAS  PubMed  Google Scholar 

  59. Chaurasia SN, Kushwaha G, Kulkarni PP, Mallick RL, Latheef NA, Mishra JK, Dash D (2019) Platelet HIF-2α promotes thrombogenicity through PAI-1 synthesis and extracellular vesicle release. Haematologica 104:2482–2492. https://doi.org/10.3324/haematol.2019.217463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gupta N, Sahu A, Prabhakar A, Chatterjee T, Tyagi T, Kumari B, Khan N, Nair V, Bajaj N, Sharma M, Ashraf MZ (2017) Activation of NLRP3 inflammasome complex potentiates venous thrombosis in response to hypoxia. Proc Natl Acad Sci U S A 114:4763–4768. https://doi.org/10.1073/pnas.1620458114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chen H, Cheng Q, Wang J, Zhao X, Zhu S (2021) Long-term efficacy and safety of hypoxia-inducible factor prolyl hydroxylase inhibitors in anaemia of chronic kidney disease: a meta-analysis including 13,146 patients. J Clin Pharm Ther 46:999–1009. https://doi.org/10.1111/jcpt.13385

    Article  CAS  PubMed  Google Scholar 

  62. Yu J, Wang S, Shi W, Zhou W, Niu Y, Huang S, Zhang Y, Zhang A, Jia Z (2021) Roxadustat prevents Ang II hypertension by targeting angiotensin receptors and eNOS. JCI Insight 6:e133690. https://doi.org/10.1172/jci.insight.133690

    Article  PubMed  PubMed Central  Google Scholar 

  63. Li L, Nakano D, Zhang A, Kittikulsuth W, Morisawa N, Ohsaki H, Suzuki N, Yamamoto M, Nishiyama A (2020) Effects of post-renal anemia treatment with the HIF-PHD inhibitor molidustat on adenine-induced renal anemia and kidney disease in mice. J Pharmacol Sci 144:229–236. https://doi.org/10.1016/j.jphs.2020.09.004

    Article  CAS  PubMed  Google Scholar 

  64. Kaelin WG Jr (2022) Von Hippel-Lindau disease: insights into oxygen sensing, protein degradation, and cancer. J Clin Invest 132:e162480. https://doi.org/10.1172/JCI162480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gardie B, Percy MJ, Hoogewijs D, Chowdhury R, Bento C, Arsenault PR, Richard S, Almeida H, Ewing J, Lambert F, McMullin MF, Schofield CJ, Lee FS (2014) The role of PHD2 mutations in the pathogenesis of erythrocytosis. Hypoxia (Auckl) 2:71–90. https://doi.org/10.2147/HP.S54455

    Article  PubMed  Google Scholar 

  66. Liu S, Zhang G, Guo J, Chen X, Lei J, Ze K, Dong L, Dai X, Gao Y, Song D, Ecker BL, Yang R, Feltcher C, Peng K, Feng C, Chen H, Lee RX, Kerestes H, Niu J, Kumar S, Xu W, Zhang J, Wei Z, Martin JS, Liu X, Mills G, Lu Y, Guo W, Sun L, Zhang L, Weeraratna A, Herlyn M, Wei W, Lee FS, Xu X (2018) Loss of Phd2 cooperates with BRAFV600E to drive melanomagenesis. Nat Commun 9:5426. https://doi.org/10.1038/s41467-018-07126-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Purdue MP, Johansson M, Zelenika D, Toro JR, Scelo G, Moore LE, Prokhortchouk E, Wu X, Kiemeney LA, Gaborieau V, Jacobs KB, Chow WH, Zaridze D, Matveev V, Lubinski J, Trubicka J, Szeszenia-Dabrowska N, Lissowska J, Rudnai P, Fabianova E, Bucur A, Bencko V, Foretova L, Janout V, Boffetta P, Colt JS, Davis FG, Schwartz KL, Banks RE, Selby PJ, Harnden P, Berg CD, Hsing AW, Grubb RL 3rd, Boeing H, Vineis P, Clavel-Chapelon F, Palli D, Tumino R, Krogh V, Panico S, Duell EJ, Quirós JR, Sanchez MJ, Navarro C, Ardanaz E, Dorronsoro M, Khaw KT, Allen NE, Bueno-de-Mesquita HB, Peeters PH, Trichopoulos D, Linseisen J, Ljungberg B, Overvad K, Tjønneland A, Romieu I, Riboli E, Mukeria A, Shangina O, Stevens VL, Thun MJ, Diver WR, Gapstur SM, Pharoah PD, Easton DF, Albanes D, Weinstein SJ, Virtamo J, Vatten L, Hveem K, Njølstad I, Tell GS, Stoltenberg C, Kumar R, Koppova K, Cussenot O, Benhamou S, Oosterwijk E, Vermeulen SH, Aben KK, van der Marel SL, Ye Y, Wood CG, Pu X, Mazur AM, Boulygina ES, Chekanov NN, Foglio M, Lechner D, Gut I, Heath S, Blanche H, Hutchinson A, Thomas G, Wang Z, Yeager M, Fraumeni JF Jr, Skryabin KG, McKay JD, Rothman N, Chanock SJ, Lathrop M, Brennan P (2011) Genome-wide association study of renal cell carcinoma identifies two susceptibility loci on 2p21 and 11q13.3. Nat Genet 43:60–65. https://doi.org/10.1038/ng.723

    Article  CAS  PubMed  Google Scholar 

  68. Cowman SJ, Koh MY (2022) Revisiting the HIF switch in the tumor and its immune microenvironment. Trends Cancer 8:28–42. https://doi.org/10.1016/j.trecan.2021.10.004

    Article  CAS  PubMed  Google Scholar 

  69. Lee SH, Golinska M, Griffiths JR (2021) HIF-1-independent mechanisms regulating metabolic adaptation in hypoxic cancer cells. Cells 10:2371. https://doi.org/10.3390/cells10092371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wicks EE, Semenza GL (2022) Hypoxia-inducible factors: cancer progression and clinical translation. J Clin Invest 132:e159839. https://doi.org/10.1172/JCI159839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Rashid M, Zadeh LR, Baradaran B, Molavi O, Ghesmati Z, Sabzichi M, Ramezani F (2021) Up-down regulation of HIF-1α in cancer progression. Gene 798:145796. https://doi.org/10.1016/j.gene.2021.145796

    Article  CAS  PubMed  Google Scholar 

  72. Chan DA, Giaccia AJ (2010) PHD2 in tumour angiogenesis. Br J Cancer 103:1–5. https://doi.org/10.1038/sj.bjc.6605682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang J, Qin Y, Martinez M, Flores-Bellver M, Rodrigues M, Dinabandhu A, Cao X, Deshpande M, Qin Y, Aparicio-Domingo S, Rui Y, Tzeng SY, Salman S, Yuan J, Scott AW, Green JJ, Canto-Soler MV, Semenza GL, Montaner S, Sodhi A (2021) HIF-1α and HIF-2α redundantly promote retinal neovascularization in patients with ischemic retinal disease. J Clin Invest 131:e139202. https://doi.org/10.1172/JCI139202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lin KY, Hsih WH, Lin YB, Wen CY, Chang TJ (2021) Update in the epidemiology, risk factors, screening, and treatment of diabetic retinopathy. J Diabetes Investig 12:1322–1325. https://doi.org/10.1111/jdi.13480

    Article  PubMed  PubMed Central  Google Scholar 

  75. Zhang D, Lv FL, Wang GH (2018) Effects of HIF-1α on diabetic retinopathy angiogenesis and VEGF expression. Eur Rev Med Pharmacol Sci 22:5071–5076. https://doi.org/10.26355/eurrev_201808_15699

    Article  CAS  PubMed  Google Scholar 

  76. Rattner A, Williams J, Nathans J (2019) Roles of HIFs and VEGF in angiogenesis in the retina and brain. J Clin Invest 129:3807–3820. https://doi.org/10.1172/JCI126655

    Article  PubMed  PubMed Central  Google Scholar 

  77. Sun Y, Wen F, Yan C, Su L, Luo J, Chi W, Zhang S (2021) Mitophagy protects the retina against anti-vascular endothelial growth factor therapy-driven hypoxia via hypoxia-inducible factor-1α signaling. Front Cell Dev Biol 9:727822. https://doi.org/10.3389/fcell.2021.727822

    Article  PubMed  PubMed Central  Google Scholar 

  78. Harten SK, Ashcroft M, Maxwell PH (2010) Prolyl hydroxylase domain inhibitors: a route to HIF activation and neuroprotection. Antioxid Redox Signal 12:459–480. https://doi.org/10.1089/ars.2009.2870

    Article  CAS  PubMed  Google Scholar 

  79. Taylor CT, Scholz CC (2022) The effect of HIF on metabolism and immunity. Nat Rev Nephrol 18:573–587. https://doi.org/10.1038/s41581-022-00587-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. McGettrick AF, O’Neill LAJ (2020) The role of HIF in immunity and inflammation. Cell Metab 32:524–536. https://doi.org/10.1016/j.cmet.2020.08.002

    Article  CAS  PubMed  Google Scholar 

  81. Watts ER, Walmsley SR (2019) Inflammation and hypoxia: HIF and PHD isoform selectivity. Trends Mol Med 25:33–46. https://doi.org/10.1016/j.molmed.2018.10.006

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Key Research and Development Program (2022YFC2705100, 2019YFA0802700, and 2019YFA0802702) and the National Natural Science Foundation of China (82090020, 82090022, 81830020, 82070701, and 82170689).

Author information

Authors and Affiliations

Authors

Contributions

Writing—original draft preparation: J.H. and M.B. Writing—review and editing: M.B., Z.J.J., and A.H.Z. Supervision: Z.J.J. and A.H.Z. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Zhanjun Jia, Aihua Zhang or Mi Bai.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J., Jia, Z., Zhang, A. et al. Long-term treatment of chronic kidney disease patients with anemia using hypoxia-inducible factor prolyl hydroxylase inhibitors: potential concerns. Pediatr Nephrol 39, 37–48 (2024). https://doi.org/10.1007/s00467-023-06031-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-023-06031-8

Keywords

Navigation