Skip to main content

Advertisement

Log in

Plant-based diets: a fad or the future of medical nutrition therapy for children with chronic kidney disease?

  • Educational Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Plant-based diets are growing in popularity worldwide due to the importance of reducing the population’s ecological footprint as well as an emerging role in the prevention and treatment of chronic human diseases. In adults, plant-based diets have been shown to be beneficial for preventing and controlling conditions that are common in patients with chronic kidney disease (CKD), such as obesity, hypertension, type 2 diabetes, dyslipidemia, and metabolic acidosis. Emerging evidence suggests that the higher fiber content of plant-based diets may help to modulate production of uremic toxins through beneficial shifts in the gut microbiome. The effects of the plant-based diet on progression of CKD remain controversial, and there are no data to support this in children. However, knowledge that the bioavailability of potassium and phosphorus from plant-based foods is reduced has led to recent changes in international kidney-friendly diet recommendations for children with CKD. The new guidelines advise that high potassium fruits and vegetables should no longer be automatically excluded from the kidney-friendly diet. In fact, a plant-based diet can be safely implemented in children with CKD through building the diet around whole, high fiber foods, avoiding processed foods and using recommended cooking methods to control potassium. The health benefits of the plant-based diet compared to omnivorous diets in children with CKD need investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Melina V, Craig W, Levin S (2016) Position of the Academy of Nutrition and Dietetics: Vegetarian Diets. J Acad Nutr Diet 116:1970–1980

    Article  PubMed  Google Scholar 

  2. Kent G, Kehoe L, Flynn A, Walton J (2022) Plant-based diets: a review of the definitions and nutritional role in the adult diet. Proc Nutr Soc 81:62–74

    Article  CAS  PubMed  Google Scholar 

  3. Hansen NM, Rix M, Kamper AL, Feldt-Rasmussen B, Christoffersen C, Astrup A, Salomo L (2021) Study protocol: long-term effect of the New Nordic Renal Diet on phosphorus and lipid homeostasis in patients with chronic kidney disease, stages 3 and 4: a randomised controlled trial. BMJ Open 11:e045754

    Article  PubMed  PubMed Central  Google Scholar 

  4. Shridhar K, Dhillon PK, Bowen L, Kinra S, Bharathi AV, Prabhakaran D, Reddy KS, Ebrahim S (2014) Nutritional profile of Indian vegetarian diets—the Indian Migration Study (IMS). Nutr J 13:55

    Article  PubMed  PubMed Central  Google Scholar 

  5. Stahler CM (2021) How Many Youth in the U.S. are Vegan? How Many Teens Eat Vegetarian When Eating Out? The Vegetarian Resource Group Asks in a YouGov Poll. The Vegetarian Resource Group. https://www.vrg.org. Accessed 20 Dec 2022

  6. Macknin M, Kong T, Weier A, Worley S, Tang AS, Alkhouri N, Golubic M (2015) Plant-based, no-added-fat or American Heart Association diets: impact on cardiovascular risk in obese children with hypercholesterolemia and their parents. J Pediatr 166:953–959.e951–953

  7. Craig WJ (2010) Nutrition concerns and health effects of vegetarian diets. Nutr Clin Pract 25:613–620

    Article  PubMed  Google Scholar 

  8. Iguacel I, Miguel-Berges ML, Gomez-Bruton A, Moreno LA, Julian C (2019) Veganism, vegetarianism, bone mineral density, and fracture risk: a systematic review and meta-analysis. Nutr Rev 77:1–18

    Article  PubMed  Google Scholar 

  9. Haider LM, Schwingshackl L, Hoffmann G, Ekmekcioglu C (2018) The effect of vegetarian diets on iron status in adults: a systematic review and meta-analysis. Crit Rev Food Sci Nutr 58:1359–1374

    Article  CAS  PubMed  Google Scholar 

  10. National Insitutes of Health. Office of Dietary Supplements (2022) Dietary Supplement Fact Sheets. https://ods.od.nih.gov/factsheets. Accessed 19 Dec 2022

  11. Santos HO, Price JC, Bueno AA (2020) Beyond fish oil supplementation: the effects of alternative plant sources of omega-3 polyunsaturated fatty acids upon lipid indexes and cardiometabolic biomarkers-an overview. Nutrients 12:3159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mariotti F, Gardner CD (2021) Dietary protein and amino acids in vegetarian diets—a review. Nutrients 13:2123

    Google Scholar 

  13. Mittendorfer B, Klein S, Fontana L (2020) A word of caution against excessive protein intake. Nat Rev Endocrinol 16:59–66

    Article  PubMed  Google Scholar 

  14. Dinu M, Abbate R, Gensini GF, Casini A, Sofi F (2017) Vegetarian, vegan diets and multiple health outcomes: a systematic review with meta-analysis of observational studies. Crit Rev Food Sci Nutr 57:3640–3649

    Article  PubMed  Google Scholar 

  15. Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ, Himmelfarb CD, Khera A, Lloyd-Jones D, McEvoy JW, Michos ED, Miedema MD, Munoz D, Smith SC Jr, Virani SS, Williams KA Sr, Yeboah J, Ziaeian B (2019) 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol 74:e177–e232

    Article  PubMed  PubMed Central  Google Scholar 

  16. Grundy SM, Stone NJ, Guideline Writing Committee for the 2018 Cholesterol Guidelines (2019) 2018 Cholesterol clinical practice guidelines: synopsis of the 2018 American Heart Association/American College of Cardiology/Multisociety Cholesterol Guideline. Ann Intern Med 170:779–783

  17. Rizzo NS, Sabate J, Jaceldo-Siegl K, Fraser GE (2011) Vegetarian dietary patterns are associated with a lower risk of metabolic syndrome: the adventist health study 2. Diabetes Care 34:1225–1227

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bradbury KE, Crowe FL, Appleby PN, Schmidt JA, Travis RC, Key TJ (2015) Serum concentrations of cholesterol, apolipoprotein A-I and apolipoprotein B in a total of 1694 meat-eaters, fish-eaters, vegetarians and vegans. Eur J Clin Nutr 69:1180

    Article  CAS  PubMed  Google Scholar 

  19. Wang F, Zheng J, Yang B, Jiang J, Fu Y, Li D (2015) Effects of vegetarian diets on blood lipids: a systematic review and meta-analysis of randomized controlled trials. J Am Heart Assoc 4:e002408

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pollakova D, Andreadi A, Pacifici F, Della-Morte D, Lauro D, Tubili C (2021) The impact of vegan diet in the prevention and treatment of type 2 diabetes: a systematic review. Nutrients 13:2123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chou RH, Chen CY, Chen IC, Huang HL, Lu YW, Kuo CS, Chang CC, Huang PH, Chen JW, Lin SJ (2019) Trimethylamine N-oxide, circulating endothelial progenitor cells, and endothelial function in patients with stable angina. Sci Rep 9:4249

    Article  PubMed  PubMed Central  Google Scholar 

  22. Fu BC, Hullar MAJ, Randolph TW, Franke AA, Monroe KR, Cheng I, Wilkens LR, Shepherd JA, Madeleine MM, Le Marchand L, Lim U, Lampe JW (2020) Associations of plasma trimethylamine N-oxide, choline, carnitine, and betaine with inflammatory and cardiometabolic risk biomarkers and the fecal microbiome in the Multiethnic Cohort Adiposity Phenotype Study. Am J Clin Nutr 111:1226–1234

    Article  PubMed  PubMed Central  Google Scholar 

  23. Jia J, Dou P, Gao M, Kong X, Li C, Liu Z, Huang T (2019) Assessment of causal direction between gut microbiota-dependent metabolites and cardiometabolic health: a bidirectional mendelian randomization analysis. Diabetes 68:1747–1755

    Article  CAS  PubMed  Google Scholar 

  24. Najjar RS, Feresin RG (2019) Plant-based diets in the reduction of body fat: physiological effects and biochemical insights. Nutrients 11:2712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Viguiliouk E, Kendall CW, Kahleova H, Rahelic D, Salas-Salvado J, Choo VL, Mejia SB, Stewart SE, Leiter LA, Jenkins DJ, Sievenpiper JL (2019) Effect of vegetarian dietary patterns on cardiometabolic risk factors in diabetes: a systematic review and meta-analysis of randomized controlled trials. Clin Nutr 38:1133–1145

    Article  PubMed  Google Scholar 

  26. Neter JE, Stam BE, Kok FJ, Grobbee DE, Geleijnse JM (2003) Influence of weight reduction on blood pressure: a meta-analysis of randomized controlled trials. Hypertension 42:878–884

    Article  CAS  PubMed  Google Scholar 

  27. Yokoyama Y, Nishimura K, Barnard ND, Takegami M, Watanabe M, Sekikawa A, Okamura T, Miyamoto Y (2014) Vegetarian diets and blood pressure: a meta-analysis. JAMA Intern Med 174:577–587

    Article  PubMed  Google Scholar 

  28. Mirmiran P, Gaeini Z, Bahadoran Z, Ghasemi A, Norouzirad R, Tohidi M, Azizi F (2021) Urinary sodium-to-potassium ratio: a simple and useful indicator of diet quality in population-based studies. Eur J Med Res 26:3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tabara Y, Takahashi Y, Kumagai K, Setoh K, Kawaguchi T, Takahashi M, Muraoka Y, Tsujikawa A, Gotoh N, Terao C, Yamada R, Kosugi S, Sekine A, Yoshimura N, Nakayama T, Matsuda F; Nagahama Study Group (2015) Descriptive epidemiology of spot urine sodium-to-potassium ratio clarified close relationship with blood pressure level: the Nagahama study. J Hypertens 33:2407–2413

  30. Zock PL, Blom WA, Nettleton JA, Hornstra G (2016) Progressing insights into the role of dietary fats in the prevention of cardiovascular disease. Curr Cardiol Rep 18:111

    Article  PubMed  PubMed Central  Google Scholar 

  31. Correa TAF, Rogero MM, Hassimotto NMA, Lajolo FM (2019) The two-way polyphenols-microbiota interactions and their effects on obesity and related metabolic diseases. Front Nutr 6:188

    Article  PubMed  PubMed Central  Google Scholar 

  32. Muralidharan J, Galie S, Hernandez-Alonso P, Bullo M, Salas-Salvado J (2019) Plant-based fat, dietary patterns rich in vegetable fat and gut microbiota modulation. Front Nutr 6:157

    Article  PubMed  PubMed Central  Google Scholar 

  33. Desai MS, Seekatz AM, Koropatkin NM, Kamada N, Hickey CA, Wolter M, Pudlo NA, Kitamoto S, Terrapon N, Muller A, Young VB, Henrissat B, Wilmes P, Stappenbeck TS, Nunez G, Martens EC (2016) A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167:1339-1353.e1321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Anderson JW, Baird P, Davis RH Jr, Ferreri S, Knudtson M, Koraym A, Waters V, Williams CL (2009) Health benefits of dietary fiber. Nutr Rev 67:188–205

    Article  PubMed  Google Scholar 

  35. Veronese N, Solmi M, Caruso MG, Giannelli G, Osella AR, Evangelou E, Maggi S, Fontana L, Stubbs B, Tzoulaki I (2018) Dietary fiber and health outcomes: an umbrella review of systematic reviews and meta-analyses. Am J Clin Nutr 107:436–444

    Article  PubMed  Google Scholar 

  36. Stephen AM, Champ MM, Cloran SJ, Fleith M, van Lieshout L, Mejborn H, Burley VJ (2017) Dietary fibre in Europe: current state of knowledge on definitions, sources, recommendations, intakes and relationships to health. Nutr Res Rev 30:149–190

    Article  CAS  PubMed  Google Scholar 

  37. Haring B, Selvin E, Liang M, Coresh J, Grams ME, Petruski-Ivleva N, Steffen LM, Rebholz CM (2017) Dietary protein sources and risk for incident chronic kidney disease: results from the Atherosclerosis Risk in Communities (ARIC) Study. J Ren Nutr 27:233–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lew QJ, Jafar TH, Koh HW, Jin A, Chow KY, Yuan JM, Koh WP (2017) Red meat intake and risk of ESRD. J Am Soc Nephrol 28:304–312

    Article  PubMed  Google Scholar 

  39. Kelly JT, Palmer SC, Wai SN, Ruospo M, Carrero JJ, Campbell KL, Strippoli GF (2017) Healthy dietary patterns and risk of mortality and ESRD in CKD: a meta-analysis of cohort studies. Clin J Am Soc Nephrol 12:272–279

    Article  PubMed  Google Scholar 

  40. Hostetter TH, Meyer TW, Rennke HG, Brenner BM (1986) Chronic effects of dietary protein in the rat with intact and reduced renal mass. Kidney Int 30:509–517

    Article  CAS  PubMed  Google Scholar 

  41. Tovar-Palacio C, Tovar AR, Torres N, Cruz C, Hernandez-Pando R, Salas-Garrido G, Pedraza-Chaverri J, Correa-Rotter R (2011) Proinflammatory gene expression and renal lipogenesis are modulated by dietary protein content in obese Zucker fa/fa rats. Am J Physiol Renal Physiol 300:F263-271

    Article  CAS  PubMed  Google Scholar 

  42. (1992) The Modification of Diet in Renal Disease Study: design, methods, and results from the feasibility study. Am J Kidney Dis 20:18–33

  43. Metzger M, Yuan WL, Haymann JP, Flamant M, Houillier P, Thervet E, Boffa JJ, Vrtovsnik F, Froissart M, Bankir L, Fouque D, Stengel B (2018) Association of a low-protein diet with slower progression of CKD. Kidney Int Rep 3:105–114

    Article  PubMed  Google Scholar 

  44. Ikizler TA, Burrowes JD, Byham-Gray LD, Campbell KL, Carrero JJ, Chan W, Fouque D, Friedman AN, Ghaddar S, Goldstein-Fuchs DJ, Kaysen GA, Kopple JD, Teta D, Yee-Moon Wang A, Cuppari L (2020) KDOQI Clinical Practice Guideline for Nutrition in CKD: 2020 Update. Am J Kidney Dis 76:S1–S107

    Article  CAS  PubMed  Google Scholar 

  45. Mirmiran P, Yuzbashian E, Aghayan M, Mahdavi M, Asghari G, Azizi F (2020) A prospective study of dietary meat intake and risk of incident chronic kidney disease. J Ren Nutr 30:111–118

    Article  CAS  PubMed  Google Scholar 

  46. Girgih AT, Nwachukwu ID, Onuh JO, Malomo SA, Aluko RE (2016) Antihypertensive properties of a pea protein hydrolysate during short- and long-term oral administration to spontaneously hypertensive rats. J Food Sci 81:H1281–H1287

    Article  CAS  PubMed  Google Scholar 

  47. Kalantar-Zadeh K, Joshi S, Schlueter R, Cooke J, Brown-Tortorici A, Donnelly M, Schulman S, Lau WL, Rhee CM, Streja E, Tantisattamo E, Ferrey AJ, Hanna R, Chen JLT, Malik S, Nguyen DV, Crowley ST, Kovesdy CP (2020) Plant-dominant low-protein diet for conservative management of chronic kidney disease. Nutrients 12:1931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wesson DE, Buysse JM, Bushinsky DA (2020) Mechanisms of metabolic acidosis-induced kidney injury in chronic kidney disease. J Am Soc Nephrol 31:469–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hansen NM, Berg P, Rix M, Pareek M, Leipziger J, Kamper AL, Astrup A, Vaarby Sørensen M, Salomo L (2022) The New Nordic Renal Diet induces a pronounced reduction of urine acid excretion and uremic toxins in CKD patients (stage 3 and 4). J Ren Nutr. https://doi.org/10.1053/j.jrn.2022.09.010

    Article  PubMed  Google Scholar 

  50. Merhi B, Shireman T, Carpenter MA, Kusek JW, Jacques P, Pfeffer M, Rao M, Foster MC, Kim SJ, Pesavento TE, Smith SR, Kew CE, House AA, Gohh R, Weiner DE, Levey AS, Ix JH, Bostom A (2017) Serum phosphorus and risk of cardiovascular disease, all-cause mortality, or graft failure in kidney transplant recipients: an ancillary study of the FAVORIT Trial Cohort. Am J Kidney Dis 70:377–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Moe SM, Zidehsarai MP, Chambers MA, Jackman LA, Radcliffe JS, Trevino LL, Donahue SE, Asplin JR (2011) Vegetarian compared with meat dietary protein source and phosphorus homeostasis in chronic kidney disease. Clin J Am Soc Nephrol 6:257–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cupisti A, Kalantar-Zadeh K (2013) Management of natural and added dietary phosphorus burden in kidney disease. Semin Nephrol 33:180–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Vaziri ND, Wong J, Pahl M, Piceno YM, Yuan J, DeSantis TZ, Ni Z, Nguyen TH, Andersen GL (2013) Chronic kidney disease alters intestinal microbial flora. Kidney Int 83:308–315

    Article  PubMed  Google Scholar 

  54. Koppe L, Mafra D, Fouque D (2015) Probiotics and chronic kidney disease. Kidney Int 88:958–966

    Article  CAS  PubMed  Google Scholar 

  55. Vanholder R, Meert N, Schepers E, Glorieux G, Argiles A, Brunet P, Cohen G, Drüeke T, Mischak H, Spasovski G, Massy Z, Jankowski J; European Uremic Toxin Work Group (EUTox) (2007) Review on uraemic solutes II—variability in reported concentrations: causes and consequences. Nephrol Dial Transplant 22:3115–3121

  56. Springmann M, Godfray HC, Rayner M, Scarborough P (2016) Analysis and valuation of the health and climate change cobenefits of dietary change. Proc Natl Acad Sci U S A 113:4146–4151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tang WH, Wang Z, Kennedy DJ, Wu Y, Buffa JA, Agatisa-Boyle B, Li XS, Levison BS, Hazen SL (2015) Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ Res 116:448–455

    Article  CAS  PubMed  Google Scholar 

  58. Koppe L, Fouque D (2017) Microbiota and prebiotics modulation of uremic toxin generation. Panminerva Med 59:173–187

    Article  PubMed  Google Scholar 

  59. Bliss DZ, Stein TP, Schleifer CR, Settle RG (1996) Supplementation with gum arabic fiber increases fecal nitrogen excretion and lowers serum urea nitrogen concentration in chronic renal failure patients consuming a low-protein diet. Am J Clin Nutr 63:392–398

    Article  CAS  PubMed  Google Scholar 

  60. Ali AA, Ali KE, Fadlalla AE, Khalid KE (2008) The effects of gum arabic oral treatment on the metabolic profile of chronic renal failure patients under regular haemodialysis in Central Sudan. Nat Prod Res 22:12–21

    Article  CAS  PubMed  Google Scholar 

  61. Younes H, Egret N, Hadj-Abdelkader M, Rémésy C, Demigné C, Gueret C, Deteix P, Alphonse JC (2006) Fermentable carbohydrate supplementation alters nitrogen excretion in chronic renal failure. J Ren Nutr 16:67–74

    Article  PubMed  Google Scholar 

  62. Sirich TL, Plummer NS, Gardner CD, Hostetter TH, Meyer TW (2014) Effect of increasing dietary fiber on plasma levels of colon-derived solutes in hemodialysis patients. Clin J Am Soc Nephrol 9:1603–1610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. KDOQI Work Group (2009) KDOQI Clinical Practice Guideline for Nutrition in Children with CKD: 2008 update. Executive summary. Am J Kidney Dis 53:S11–S104

  64. Shah LN, Matheson MB, Furth SL, Schwartz GJ, Warady BA, Wong CJ (2022) Low variability of plant protein intake in the CKiD cohort does not demonstrate changes in estimated GFR nor electrolyte balance. Pediatr Nephrol 37:1647–1655

    Article  PubMed  Google Scholar 

  65. Martínez-Pineda M, Yagüe-Ruiz C, Caverni-Muñoz A, Vercet-Tormo A (2019) Cooking legumes: a way for their inclusion in the renal patient diet. J Ren Nutr 29:118–125

    Article  PubMed  Google Scholar 

  66. Burrowes JD, Ramer NJ (2006) Removal of potassium from tuberous root vegetables by leaching. J Ren Nutr 16:304–311

    Article  PubMed  Google Scholar 

  67. Burrowes JD, Ramer NJ (2008) Changes in potassium content of different potato varieties after cooking. J Ren Nutr 18:530–534

    Article  PubMed  Google Scholar 

  68. Desloovere A, Renken-Terhaerdt J, Tuokkola J, Shaw V, Greenbaum LA, Haffner D, Anderson C, Nelms CL, Oosterveld MJS, Paglialonga F, Polderman N, Qizalbash L, Warady BA, Shroff R, Vande Walle J (2021) The dietary management of potassium in children with CKD stages 2–5 and on dialysis-clinical practice recommendations from the Pediatric Renal Nutrition Taskforce. Pediatr Nephrol 36:1331–1346

    Article  PubMed  PubMed Central  Google Scholar 

  69. McAlister L, Pugh P, Greenbaum L, Haffner D, Rees L, Anderson C, Desloovere A, Nelms C, Oosterveld M, Paglialonga F, Polderman N, Qizalbash L, Renken-Terhaerdt J, Tuokkola J, Warady B, Walle JV, Shaw V, Shroff R (2020) The dietary management of calcium and phosphate in children with CKD stages 2–5 and on dialysis-clinical practice recommendation from the Pediatric Renal Nutrition Taskforce. Pediatr Nephrol 35:501–518

    Article  PubMed  Google Scholar 

  70. McClanahan D, Yeh A, Firek B, Zettle S, Rogers M, Cheek R, Nguyen MVL, Gayer CP, Wendell SG, Mullett SJ, Morowitz MJ (2019) Pilot study of the effect of plant-based enteral nutrition on the gut microbiota in chronically Ill tube-fed children. JPEN J Parenter Enteral Nutr 43:899–911

    Article  CAS  PubMed  Google Scholar 

  71. Al-Tawil Y, Ryan R, Patterson P, Wilson M, Millovich V (2022) Growth and tolerance of pediatric patients transitioned from a hypoallergenic formula to a pea-protein plant-based formula. J Pediatr Gastroenterol Nutr 75:S482–S483

    Google Scholar 

  72. Gallagher K, Flint A, Mouzaki M, Carpenter A, Haliburton B, Bannister L, Norgrove H, Hoffman L, Mack D, Stintzi A, Marcon M (2018) Blenderized enteral nutrition diet study: feasibility, clinical, and microbiome outcomes of providing blenderized feeds through a gastric tube in a medically complex pediatric population. JPEN J Parenter Enteral Nutr 42:1046–1060

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristen Sgambat.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Answers:

1. C; 2. A; 3. E; 4. B; 5. C

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nhan, J., Sgambat, K. & Moudgil, A. Plant-based diets: a fad or the future of medical nutrition therapy for children with chronic kidney disease?. Pediatr Nephrol 38, 3597–3609 (2023). https://doi.org/10.1007/s00467-023-05875-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-023-05875-4

Keywords

Navigation