Skip to main content

Advertisement

Log in

Glomerular hyperfiltration: part 1 — defining the threshold — is the sky the limit?

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Glomerular hyperfiltration (GHF) is an increase in single-nephron glomerular filtration rate (GFR) that occurs in both physiological states and pathological states. Whole-kidney GHF is often used as a surrogate for single-nephron hyperfiltration since determining single-nephron GFR is impossible in routine clinical care. A clear definition (read threshold) of GHF is lacking. The aim of the first part of this review was to find evidence for defining the threshold for GHF, based on literature review, including systematic reviews and meta-analysis data, with both measured and estimated GFR. The consensus pediatric threshold for GHF as obtained from reviews, measured and estimated GFR studies, can reliably be set to 135 mL/min/1.73 m2 for children aged > 2 years. Diagnosing GHF from SCr-based estimated GFR is not reliable in subjects with reduced muscle mass. In these cases, it could be of interest to confirm the state of GHF using cystatin C-based eGFR, or preferably, by measured GFR, using methods that are accurate in the high GFR-range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Denic A, Glassock RJ, Rule AD (2017) Single-nephron glomerular filtration rate in healthy adults. N Engl J Med 377:1203–1204

    PubMed  Google Scholar 

  2. Tonneijck L, Muskiet MH, Smits MM, van Bommel EJ, Heerspink HJ, van Raalte DH, Joles JA (2017) Glomerular hyperfiltration in diabetes: mechanisms, clinical significance, and treatment. J Am Soc Nephrol 28:1023–1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Molitch ME, Gao X, Bebu I, de Boer IH, Lachin J, Paterson A, Perkins B, Saenger AK, Steffes M, Zinman B; Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Research Group (2019) Early glomerular hyperfiltration and long-term kidney outcomes in type 1 diabetes: the DCCT/EDIC experience. Clin J Am Soc Nephrol 14:854–861

    Article  Google Scholar 

  4. Haymann JP, Stankovic K, Levy P, Avellino V, Tharaux PL, Letavernier E, Grateau G, Baud L, Girot R, Lionnet F (2010) Glomerular hyperfiltration in adult sickle cell anemia: a frequent hemolysis associated feature. Clin J Am Soc Nephrol 5:756–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hirschberg R (2010) Glomerular hyperfiltration in sickle cell disease. Clin J Am Soc Nephrol 5:748–749

    Article  PubMed  Google Scholar 

  6. Helal I, Reed B, McFann K, Yan XD, Fick-Brosnahan GM, Cadnapaphornchai M, Schrier RW (2011) Glomerular hyperfiltration and renal progression in children with autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol 6:2439–2443

    Article  PubMed  PubMed Central  Google Scholar 

  7. Schmieder RE, Messerli FH, Garavaglia G, Nunez B (1990) Glomerular hyperfiltration indicates early target organ damage in essential hypertension. JAMA 264:2775–2780

    Article  CAS  PubMed  Google Scholar 

  8. Chagnac A, Herman M, Zingerman B, Erman A, Rozen-Zvi B, Hirsh J, Gafter U (2008) Obesity-induced glomerular hyperfiltration: its involvement in the pathogenesis of tubular sodium reabsorption. Nephrol Dial Transplant 23:3946–3952

    Article  CAS  PubMed  Google Scholar 

  9. Tomaszewski M, Charchar FJ, Maric C, McClure J, Crawford L, Grzeszczak W, Sattar N, Zukowska-Szczechowska E, Dominiczak AF (2007) Glomerular hyperfiltration: a new marker of metabolic risk. Kidney Int 71:816–821

    Article  CAS  PubMed  Google Scholar 

  10. Bergstrom J, Ahlberg M, Alvestrand A (1985) Influence of protein intake on renal hemodynamics and plasma hormone concentrations in normal subjects. Acta Med Scand 217:189–196

    Article  CAS  PubMed  Google Scholar 

  11. Conrad KP (2004) Mechanisms of renal vasodilation and hyperfiltration during pregnancy. J Soc Gynecol Investig 11:438–448

    Article  CAS  PubMed  Google Scholar 

  12. Luyckx VA, Rule AD, Tuttle KR, Delanaye P, Liapis H, Gandjour A, Romagnani P, Anders HJ (2022) Nephron overload as a therapeutic target to maximize kidney lifespan. Nat Rev Nephrol 18:171–183

    Article  PubMed  Google Scholar 

  13. Melsom T, Nair V, Schei J, Mariani L, Stefansson VTN, Harder JL, Jenssen TG, Solbu MD, Norvik JV, Looker H, Knowler WC, Kretzler M, Nelson RG, Eriksen BO (2019) Correlation between baseline GFR and subsequent change in GFR in Norwegian adults without diabetes and in Pima Indians. Am J Kidney Dis 73:777–785

    Article  PubMed  Google Scholar 

  14. Chakkera HA, Denic A, Kremers WK, Stegall MD, Larson JJ, Ravipati H, Taler SJ, Lieske JC, Lerman LO, Augustine JJ, Rule AD (2020) Comparison of high glomerular filtration rate thresholds for identifying hyperfiltration. Nephrol Dial Transplant 35:1017–1026

    Article  CAS  PubMed  Google Scholar 

  15. Peralta CA, Katz R, DeBoer I, Ix J, Sarnak M, Kramer H, Siscovick D, Shea S, Szklo M, Shlipak M (2011) Racial and ethnic differences in kidney function decline among persons without chronic kidney disease. J Am Soc Nephrol 22:1327–1334

    Article  PubMed  PubMed Central  Google Scholar 

  16. Levey AS, Titan SM, Powe NR, Corsh J, Inker LA (2020) Kidney disease, race and GFR estimation. Clin J Am Soc Nephrol 15:1203–1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Delanaye P, Krzesinski JM (2011) Indexing of renal function parameters by body surface area: intelligence or folly? Nephron Clin Pract 119:c289-292

    Article  PubMed  Google Scholar 

  18. Helal I, Fick-Brosnahan GM, Reed-Gitomer B, Schrier RW (2012) Glomerular hyperfiltration: definitions, mechanisms and clinical implications. Nat Rev Nephrol 8:293–300

    Article  CAS  PubMed  Google Scholar 

  19. Cachat F, Combescure C, Cauderay M, Girardin E, Chehade H (2015) A systematic review of glomerular hyperfiltration assessment and definition in the medical literature. Clin J Am Soc Nephrol 10:382–389

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pottel H, Hoste L, Martens F (2012) A simple height-independent equation for estimating glomerular filtration rate in children. Pediatr Nephrol 27:973–979

    Article  PubMed  Google Scholar 

  21. Pottel H, Hoste L, Delanaye P (2015) Abnormal glomerular filtration rate in children, adolescents and young adults starts below 75 mL/min/1.73m2. Pediatr Nephrol 30:821–828

    Article  PubMed  Google Scholar 

  22. Pottel H (2017) Measuring and estimating glomerular filtration rate in children. Pediatr Nephrol 32:249–263

    Article  PubMed  Google Scholar 

  23. Pottel H, Bjork J, Courbebaisse M, Couzi L, Ebert N, Eriksen BO, Dalton RN, Dubourg L, Gaillard F, Garrouste C, Grubb A, Jacquemont L, Hansson M, Kamar N, Lamb EJ, Legendre C, Littmann K, Mariat C, Melsom T, Rostaing L, Rule AD, Schaeffner E, Sundin PO, Turner S, Bokenkamp A, Berg U, Asling-Monemi K, Selistre L, Akesson A, Larsson A, Nyman U, Delanaye P (2021) Development and validation of a modified full age spectrum creatinine-based equation to estimate glomerular filtration rate : a cross-sectional analysis of pooled data. Ann Intern Med 174:183–191

    Article  PubMed  Google Scholar 

  24. Huang SH, Sharma AP, Yasin A, Lindsay RM, Clark WF, Filler G (2011) Hyperfiltration affects accuracy of creatinine eGFR measurement. Clin J Am Soc Nephrol 6:274–280

    Article  PubMed  PubMed Central  Google Scholar 

  25. Pottel H, Björk J, Delanaye P, Nyman U (2022) Evaluation of the creatinine-based chronic kidney disease in children (under 25 years) equation in healthy children and adolescents. Pediatr Nephrol. https://doi.org/10.1007/s00467-022-05429-0

  26. Pierce CB, Munoz A, Ng DK, Warady BA, Furth SL, Schwartz GJ (2021) Age- and sex-dependent clinical equations to estimate glomerular filtration rates in children and young adults with chronic kidney disease. Kidney Int 99:948–956

    Article  CAS  PubMed  Google Scholar 

  27. Braat E, Hoste L, De Waele L, Gheysens O, Vermeersch P, Goffin K, Pottel H, Goemans N, Levtchenko E (2015) Renal function in children and adolescents with Duchenne muscular dystrophy. Neuromuscul Disord 25:381–387

    Article  PubMed  Google Scholar 

  28. Delanaye P, Cavalier E, Radermecker RP, Paquot N, Depas G, Chapelle JP, Scheen AJ, Krzesinski JM (2009) Estimation of GFR by different creatinine- and cystatin-C-based equations in anorexia nervosa. Clin Nephrol 71:482–491

    Article  CAS  PubMed  Google Scholar 

  29. Delanaye P, Cavalier E, Pottel H (2017) Serum creatinine: not so simple! Nephron 136:302–308

    Article  CAS  PubMed  Google Scholar 

  30. Pottel H, Hoste L, Yayo E, Delanaye P (2017) Glomerular filtration rate in healthy living potential kidney donors: a meta-analysis supporting the construction of the full age spectrum equation. Nephron 135:105–119

    Article  PubMed  Google Scholar 

  31. Pottel H, Delanaye P, Weekers L, Selistre L, Goffin K, Gheysens O, Dubourg L (2017) Age-dependent reference intervals for estimated and measured glomerular filtration rate. Clin Kidney J 10:545–551

    Article  PubMed  PubMed Central  Google Scholar 

  32. Piepsz A, Tondeur M, Ham H (2006) Revisiting normal 51Cr-ethylenediaminetetraacetic acid clearance values in children. Eur J Nucl Med Mol Imaging 33:1477–1482

    Article  CAS  PubMed  Google Scholar 

  33. Blake GM, Gardiner N, Gnanasegaran G, Sabina D (2005) Reference ranges for 51Cr-EDTA measurements of glomerular filtration rate in children. Nucl Med Commun 26:983–987

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Pottel.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pottel, H., Adebayo, O.C., Nkoy, A.B. et al. Glomerular hyperfiltration: part 1 — defining the threshold — is the sky the limit?. Pediatr Nephrol 38, 2523–2527 (2023). https://doi.org/10.1007/s00467-022-05827-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-022-05827-4

Keywords

Navigation