Skip to main content

Advertisement

Log in

Cystic kidney disease in tuberous sclerosis complex: current knowledge and unresolved questions

  • Educational Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Tuberous sclerosis complex (TSC) is an autosomal dominant disorder with an estimated incidence of one in 5000 to 10,000 live births worldwide. Two million people of all races and genders are estimated to have TSC secondary to mutations in one of two tumor suppressor genes, TSC1 or TSC2. The respective TSC1 and 2 gene products — hamartin and tuberin — form cytoplasmic heterodimers that inhibit mTOR-mediated cell growth and division. When mTOR inhibition is lost, people with TSC develop characteristic and usually benign tumors in various organ systems. Kidney tumors and cysts are common, particularly in the setting of TSC2 gene mutations. In most TSC patients, the number of kidney cysts is limited, their morphology is simple, their size is small, and their clinical significance is negligible. In some, cyst morphology progresses from simple to complex with the risk of malignant transformation. In others, aggressive accumulation and growth of kidney cysts can cause hypertension, impaired kidney function, and progression to kidney failure. This educational review summarizes current knowledge and remaining open questions regarding cystic kidney disease in TSC, emphasizing detection, classification, surveillance, and treatment options.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

ADPKD:

Autosomal dominant polycystic kidney disease

AML:

Angiomyolipoma

CGS:

Contiguous gene syndrome

CKD:

Chronic kidney disease

KF:

Kidney failure

LAM:

Lymphangioleiomyomatosis

mTOR:

Mammalian target of rapamycin

mTORc1:

MTOR complex 1

PC-1:

Polycystin-1

PKD:

Polycystic kidney disease

RHEB:

Ras homolog enriched in brain

References

  1. Henske EP, Jóźwiak S, Kingswood JC, Sampson JR et al (2016) Tuberous sclerosis complex. Nat Rev Dis Primers 2:16035. https://doi.org/10.1038/nrdp.2016.35

    Article  PubMed  Google Scholar 

  2. Northrup H, Aronow ME, Bebin EM, Bissler J et al (2021) Updated international tuberous sclerosis complex diagnostic criteria and surveillance and management recommendations. Pediatr Neurol 123:50–66. https://doi.org/10.1016/j.pediatrneurol.2021.07.011

    Article  PubMed  Google Scholar 

  3. Bissler JJ, Christopher Kingswood J (2018) Renal manifestation of tuberous sclerosis complex. Am J Med Genet C Semin Med Genet 178:338–347. https://doi.org/10.1002/ajmg.c.31654

    Article  PubMed  Google Scholar 

  4. Kingswood JC, Belousova E, Benedik MP, Carter T et al (2020) Renal manifestations of tuberous sclerosis complex: key findings from the final analysis of the TOSCA study focussing mainly on renal angiomyolipomas. Front Neurol 11:972. https://doi.org/10.3389/fneur.2020.00972

    Article  PubMed  PubMed Central  Google Scholar 

  5. Henske EP, Cornejo KM, Wu C-L (2021) Renal cell carcinoma in tuberous sclerosis complex. Genes (Basel) 12:1585. https://doi.org/10.3390/genes12101585

    Article  CAS  PubMed  Google Scholar 

  6. Sauter M, Belousova E, Benedik MP, Carter T et al (2021) Rare manifestations and malignancies in tuberous sclerosis complex: findings from the TuberOus SClerosis registry to increase disease awareness (TOSCA). Orphanet J Rare Dis 16:301. https://doi.org/10.1186/s13023-021-01917-y

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ewalt DH, Sheffield E, Sparagana SP, Delgado MR et al (1998) Renal lesion growth in children with tuberous sclerosis complex. J Urol 160:141–145

    Article  CAS  PubMed  Google Scholar 

  8. Lam HC, Siroky BJ, Henske EP (2018) Renal disease in tuberous sclerosis complex: pathogenesis and therapy. Nat Rev Nephrol 14:704–716. https://doi.org/10.1038/s41581-018-0059-6

    Article  PubMed  Google Scholar 

  9. Rakowski SK, Winterkorn EB, Paul E, Steele DJR et al (2006) Renal manifestations of tuberous sclerosis complex: incidence, prognosis, and predictive factors. Kidney Int 70:1777–1782. https://doi.org/10.1038/sj.ki.5001853

    Article  CAS  PubMed  Google Scholar 

  10. Amin S, Lux A, Calder N, Laugharne M et al (2017) Causes of mortality in individuals with tuberous sclerosis complex. Dev Med Child Neurol 59:612–617. https://doi.org/10.1111/dmcn.13352

    Article  PubMed  Google Scholar 

  11. Eijkemans MJC, van der Wal W, Reijnders LJ, Roes KCB et al (2015) Long-term follow-up assessing renal angiomyolipoma treatment patterns, morbidity, and mortality: an observational study in tuberous sclerosis complex patients in the Netherlands. Am J Kidney Dis 66:638–645. https://doi.org/10.1053/j.ajkd.2015.05.016

    Article  PubMed  Google Scholar 

  12. Shepherd CW, Gomez MR, Lie JT, Crowson CS (1991) Causes of death in patients with tuberous sclerosis. Mayo Clin Proc 66:792–796. https://doi.org/10.1016/s0025-6196(12)61196-3

    Article  CAS  PubMed  Google Scholar 

  13. Janssens P, van Hoeve K, de Waele L, de Rechter S et al (2018) Renal progression factors in young patients with tuberous sclerosis complex: a retrospective cohort study. Pediatr Nephrol 33:2085–2093. https://doi.org/10.1007/s00467-018-4003-6

    Article  PubMed  Google Scholar 

  14. Roberts PS, Chung J, Jozwiak S, Dabora SL et al (2002) SNP identification, haplotype analysis, and parental origin of mutations in TSC2. Hum Genet 111:96–101. https://doi.org/10.1007/s00439-002-0738-y

    Article  CAS  PubMed  Google Scholar 

  15. Tyburczy ME, Dies KA, Glass J, Camposano S et al (2015) Mosaic and intronic mutations in TSC1/TSC2 explain the majority of TSC patients with no mutation identified by conventional testing. PLoS Genet 11:e1005637. https://doi.org/10.1371/journal.pgen.1005637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Martin KR, Zhou W, Bowman MJ, Shih J et al (2017) The genomic landscape of tuberous sclerosis complex. Nat Commun 8:15816. https://doi.org/10.1038/ncomms15816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Warncke JC, Brodie KE, Grantham EC, Catarinicchia SP et al (2017) Pediatric renal angiomyolipomas in tuberous sclerosis complex. J Urol 197:500–506. https://doi.org/10.1016/j.juro.2016.09.082

    Article  PubMed  Google Scholar 

  18. Dabora SL, Jozwiak S, Franz DN, Roberts PS et al (2001) Mutational analysis in a cohort of 224 tuberous sclerosis patients indicates increased severity of TSC2, compared with TSC1, disease in multiple organs. Am J Hum Genet 68:64–80. https://doi.org/10.1086/316951

    Article  CAS  PubMed  Google Scholar 

  19. Francis J, DiMario FJ Jr. (2019) NORD’s rare disease database: tuberous sclerosis. https://rarediseases.org/rare-diseases/tuberous-sclerosis/. Accessed 28 October 2022.

  20. Yang H, Yu Z, Chen X, Li J et al (2021) Structural insights into TSC complex assembly and GAP activity on Rheb. Nat Commun 12:339. https://doi.org/10.1038/s41467-020-20522-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pema M, Drusian L, Chiaravalli M, Castelli M et al (2016) mTORC1-mediated inhibition of polycystin-1 expression drives renal cyst formation in tuberous sclerosis complex. Nat Commun 7:10786. https://doi.org/10.1038/ncomms10786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Siroky BJ, Towbin AJ, Trout AT, Schäfer H et al (2017) Improvement in renal cystic disease of tuberous sclerosis complex after treatment with mammalian target of rapamycin inhibitor. J Pediatr 187:318-322.e2. https://doi.org/10.1016/j.jpeds.2017.05.015

    Article  CAS  PubMed  Google Scholar 

  23. Low SH, Vasanth S, Larson CH, Mukherjee S et al (2006) Polycystin-1, STAT6, and P100 function in a pathway that transduces ciliary mechanosensation and is activated in polycystic kidney disease. Dev Cell 10:57–69. https://doi.org/10.1016/j.devcel.2005.12.005

    Article  CAS  PubMed  Google Scholar 

  24. Lai Y, Jiang Y (2020) Reciprocal regulation between primary cilia and mTORC1. Genes (Basel) 11:711. https://doi.org/10.3390/genes11060711

    Article  CAS  PubMed  Google Scholar 

  25. Shillingford JM, Murcia NS, Larson CH, Low SH et al (2006) The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proc Natl Acad Sci U S A 103:5466–5471. https://doi.org/10.1073/pnas.0509694103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yamamoto Y, Mizushima N (2021) Autophagy and ciliogenesis. JMA J 4:207–215. https://doi.org/10.31662/jmaj.2021-0090

  27. Hartman TR, Liu D, Zilfou JT, Robb V et al (2009) The tuberous sclerosis proteins regulate formation of the primary cilium via a rapamycin-insensitive and polycystin 1-independent pathway. Hum Mol Genet 18:151–163. https://doi.org/10.1093/hmg/ddn325

    Article  CAS  PubMed  Google Scholar 

  28. Bonsib SM, Boils C, Gokden N, Grignon D et al (2016) Tuberous sclerosis complex: hamartin and tuberin expression in renal cysts and its discordant expression in renal neoplasms. Pathol Res Pract 212:972–979. https://doi.org/10.1016/j.prp.2016.04.005

    Article  CAS  PubMed  Google Scholar 

  29. Bissler JJ, Zadjali F, Bridges D, Astrinidis A et al (2019) Tuberous sclerosis complex exhibits a new renal cystogenic mechanism. Physiol Rep 7:e13983. https://doi.org/10.14814/phy2.13983

  30. Kumar P, Zadjali F, Yao Y, Johnson D et al (2022) Tsc2 mutation induces renal tubular cell nonautonomous disease. Genes Dis 9:187–200. https://doi.org/10.1016/j.gendis.2021.03.010

    Article  CAS  PubMed  Google Scholar 

  31. Ståhl A-L, Johansson K, Mossberg M, Kahn R et al (2019) Exosomes and microvesicles in normal physiology, pathophysiology, and renal diseases. Pediatr Nephrol 34:11–30. https://doi.org/10.1007/s00467-017-3816-z

    Article  PubMed  Google Scholar 

  32. Pomatto MAC, Gai C, Bussolati B, Camussi G (2017) Extracellular vesicles in renal pathophysiology. Front Mol Biosci 4:37. https://doi.org/10.3389/fmolb.2017.00037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yates JR, MacLean C, Higgins JNP, Humphrey A et al (2011) The Tuberous Sclerosis 2000 study: presentation, initial assessments and implications for diagnosis and management. Arch Dis Child 96:1020–1025. https://doi.org/10.1136/adc.2011.211995

    Article  PubMed  Google Scholar 

  34. Consugar MB, Wong WC, Lundquist PA, Rossetti S et al (2008) Characterization of large rearrangements in autosomal dominant polycystic kidney disease and the PKD1/TSC2 contiguous gene syndrome. Kidney Int 74:1468–1479. https://doi.org/10.1038/ki.2008.485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sampson JR, Maheshwar MM, Aspinwall R, Thompson P et al (1997) Renal cystic disease in tuberous sclerosis: role of the polycystic kidney disease 1 gene. Am J Hum Genet 61:843–851. https://doi.org/10.1086/514888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hindman N, Ngo L, Genega EM, Melamed J et al (2012) Angiomyolipoma with minimal fat: can it be differentiated from clear cell renal cell carcinoma by using standard MR techniques? Radiology 265:468–477. https://doi.org/10.1148/radiol.12112087

    Article  PubMed  PubMed Central  Google Scholar 

  37. Park BK (2017) Renal angiomyolipoma: radiologic classification and imaging features according to the amount of fat. AJR Am J Roentgenol 209:826–835. https://doi.org/10.2214/AJR.17.17973

    Article  Google Scholar 

  38. Wang MX, Segaran N, Bhalla S, Pickhardt PJ et al (2021) Tuberous sclerosis: current update. Radiographics 41:1992–2010. https://doi.org/10.1148/rg.2021210103

    Article  PubMed  Google Scholar 

  39. Yamakado K, Tanaka N, Nakagawa T, Kobayashi S et al (2002) Renal angiomyolipoma: relationships between tumor size, aneurysm formation, and rupture. Radiology 225:78–82. https://doi.org/10.1148/radiol.2251011477

    Article  PubMed  Google Scholar 

  40. Trnka P, Kennedy SE (2021) Renal tumors in tuberous sclerosis complex. Pediatr Nephrol 36:1427–1438. https://doi.org/10.1007/s00467-020-04775-1

    Article  PubMed  Google Scholar 

  41. Robert A, Leroy V, Riquet A, Gogneaux L et al (2016) Renal involvement in tuberous sclerosis complex with emphasis on cystic lesions. Radiol Med 121:402–408. https://doi.org/10.1007/s11547-015-0572-7

    Article  PubMed  Google Scholar 

  42. Casper KA, Donnelly LF, Chen B, Bissler JJ (2002) Tuberous sclerosis complex: renal imaging findings. Radiology 225:451–456. https://doi.org/10.1148/radiol.2252011584

    Article  PubMed  Google Scholar 

  43. Gimpel C, Avni EF, Breysem L, Burgmaier K et al (2019) Imaging of kidney cysts and cystic kidney diseases in children: an international working group consensus statement. Radiology 290:769–782. https://doi.org/10.1148/radiol.2018181243

    Article  PubMed  Google Scholar 

  44. Bernstein J (1993) Glomerulocystic kidney disease – nosological considerations. Pediatr Nephrol 7:464–470. https://doi.org/10.1007/BF00857576

    Article  CAS  PubMed  Google Scholar 

  45. Wilson MP, Patel D, Murad MH, McInnes MDF et al (2020) Diagnostic performance of MRI in the detection of renal lipid-poor angiomyolipomas: a systematic review and meta-analysis. Radiology 296:511–520. https://doi.org/10.1148/radiol.2020192070

    Article  PubMed  Google Scholar 

  46. Chan JP, Back SJ, Vatsky S, Calle-Toro JS et al (2021) Utility of contrast-enhanced ultrasound for solid mass surveillance and characterization in children with tuberous sclerosis complex: an initial experience. Pediatr Nephrol 36:1775–1784. https://doi.org/10.1007/s00467-020-04835-6

    Article  PubMed  Google Scholar 

  47. Raab C, Gilligan LA, Trout AT, Krueger DA et al (2020) mTOR inhibitor therapy for tuberous sclerosis complex: longitudinal study of muscle mass determined by abdominal cross-sectional imaging with CT and MRI. Radiol Imaging Cancer 2:e190091. https://doi.org/10.1148/rycan.2020190091

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sasongko TH, Ismail NFD, Zabidi-Hussin Z (2016) Rapamycin and rapalogs for tuberous sclerosis complex. Cochrane Database Syst Rev 7:CD011272. https://doi.org/10.1002/14651858.CD011272.pub2

  49. Lin C-H, Chao C-T, Wu M-Y, Lo W-C et al (2019) Use of mammalian target of rapamycin inhibitors in patient with autosomal dominant polycystic kidney disease: an updated meta-analysis. Int Urol Nephrol 51:2015–2025. https://doi.org/10.1007/s11255-019-02292-1

    Article  CAS  PubMed  Google Scholar 

  50. Walz G, Budde K, Mannaa M, Nürnberger J et al (2010) Everolimus in patients with autosomal dominant polycystic kidney disease. N Engl J Med 363:830–840. https://doi.org/10.1056/NEJMoa1003491

    Article  CAS  PubMed  Google Scholar 

  51. Serra AL, Poster D, Kistler AD, Krauer F et al (2010) Sirolimus and kidney growth in autosomal dominant polycystic kidney disease. N Engl J Med 363:820–829. https://doi.org/10.1056/NEJMoa0907419

    Article  CAS  PubMed  Google Scholar 

  52. Yang P, Cornejo KM, Sadow PM, Cheng L et al (2014) Renal cell carcinoma in tuberous sclerosis complex. Am J Surg Pathol 38:895–909. https://doi.org/10.1097/PAS.0000000000000237

    Article  PubMed  PubMed Central  Google Scholar 

  53. Peron A, Vignoli A, la Briola F, Volpi A et al (2016) Do patients with tuberous sclerosis complex have an increased risk for malignancies? Am J Med Genet A 170:1538–1544. https://doi.org/10.1002/ajmg.a.37644

    Article  CAS  PubMed  Google Scholar 

  54. Bernstein J, Robbins TO (1991) Renal involvement in tuberous sclerosis. Ann N Y Acad Sci 615:36–49. https://doi.org/10.1111/j.1749-6632.1991.tb37746.x

    Article  CAS  PubMed  Google Scholar 

  55. Downey RT, Dillman JR, Ladino-Torres MF, McHugh JB et al (2012) CT and MRI appearances and radiologic staging of pediatric renal cell carcinoma. Pediatr Radiol 42:410–417. https://doi.org/10.1007/s00247-011-2319-5

    Article  PubMed  Google Scholar 

  56. Chung EM, Lattin GE, Fagen KE, Kim AM et al (2017) Renal tumors of childhood: radiologic-pathologic correlation part 2. The 2nd decade: from the radiologic pathology archives. Radiographics 37:1538–1558. https://doi.org/10.1148/rg.2017160189

    Article  PubMed  Google Scholar 

  57. Saltzman AF, Carrasco A, Colvin AN, Meyers ML et al (2018) Can a modified Bosniak classification system risk stratify pediatric cystic renal masses? J Urol 200:434–439. https://doi.org/10.1016/j.juro.2018.03.076

    Article  PubMed  Google Scholar 

  58. Bosniak MA (1986) The current radiological approach to renal cysts. Radiology 158:1–10. https://doi.org/10.1148/radiology.158.1.3510019

    Article  CAS  PubMed  Google Scholar 

  59. Silverman SG, Pedrosa I, Ellis JH, Hindman NM et al (2019) Bosniak classification of cystic renal masses, version 2019: an update proposal and needs assessment. Radiology 292:475–488. https://doi.org/10.1148/radiol.2019182646

    Article  PubMed  Google Scholar 

  60. Tse JR, Shen J, Shen L, Yoon L et al (2021) Bosniak classification of cystic renal masses version 2019: comparison of categorization using CT and MRI. AJR Am J Roentgenol 216:412–420. https://doi.org/10.2214/AJR.20.23656

    Article  Google Scholar 

  61. Sanchez A, Feldman AS, Hakimi AA (2018) Current management of small renal masses, including patient selection, renal tumor biopsy, active surveillance, and thermal ablation. J Clin Oncol 36:3591–3600. https://doi.org/10.1200/JCO.2018.79.2341

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kozlowski P, Roberts P, Dabora S, Franz D et al (2007) Identification of 54 large deletions/duplications in TSC1 and TSC2 using MLPA, and genotype-phenotype correlations. Hum Genet 121:389–400. https://doi.org/10.1007/s00439-006-0308-9

    Article  CAS  PubMed  Google Scholar 

  63. Brook-Carter PT, Peral B, Ward CJ, Thompson P et al (1994) Deletion of the TSC2 and PKD1 genes associated with severe infantile polycystic kidney disease – a contiguous gene syndrome. Nat Genet 8:328–332. https://doi.org/10.1038/ng1294-328

    Article  CAS  PubMed  Google Scholar 

  64. Shang S, Mei Y, Wang T, Zheng X et al (2022) Diagnosis and genotype-phenotype correlation in patients with PKD1/TSC2 contiguous gene deletion syndrome. Clin Nephrol 97:328–338. https://doi.org/10.5414/CN110476

    Article  PubMed  Google Scholar 

  65. Back SJ, Andronikou S, Kilborn T, Kaplan BS et al (2015) Imaging features of tuberous sclerosis complex with autosomal-dominant polycystic kidney disease: a contiguous gene syndrome. Pediatr Radiol 45:386–395. https://doi.org/10.1007/s00247-014-3147-1

    Article  PubMed  Google Scholar 

  66. Gimpel C, Bergmann C, Bockenhauer D, Breysem L et al (2019) International consensus statement on the diagnosis and management of autosomal dominant polycystic kidney disease in children and young people. Nat Rev Nephrol 15:713–726. https://doi.org/10.1038/s41581-019-0155-2

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elahna Paul.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Answers:

1. c; 2. b; 3. d; 4. a; 5. c

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gallo-Bernal, S., Kilcoyne, A., Gee, M.S. et al. Cystic kidney disease in tuberous sclerosis complex: current knowledge and unresolved questions. Pediatr Nephrol 38, 3253–3264 (2023). https://doi.org/10.1007/s00467-022-05820-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-022-05820-x

Keywords

Navigation