Skip to main content

Advertisement

Log in

Phthalates cause a low-renin phenotype commonly found in premature infants with idiopathic neonatal hypertension

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Since the 1970s, when the initial reports of neonatal hypertension related to renal artery thromboembolism were published, other secondary causes of neonatal hypertension have been reported. Those infants with no identifiable cause of hypertension were labeled with a variety of terms. Herein, we describe such infants as having idiopathic neonatal hypertension (INH). Most, but not all, of these hypertensive infants were noted to have bronchopulmonary dysplasia (BPD). More recently, reports described common clinical characteristics seen in INH patients, whether or not they had BPD. This phenotype includes low plasma renin activity, presentation near 40 weeks postmenstrual age, and a favorable response to treatment with spironolactone. A small prospective study in INH patents showed evidence of mineralocorticoid receptor activation due to inhibition of 11β-HSD2, the enzyme that converts cortisol to the less potent mineralocorticoid—cortisone. Meanwhile, phthalate metabolites have been shown to inhibit 11β-HSD2 in human microsomes. Premature infants can come in contact with exceptionally large phthalate exposures, especially those infants with BPD. This work describes a common low-renin phenotype, commonly seen in patients categorized as having INH. Further, we review the evidence that hypertension in INH patients with the low-renin phenotype may be mediated by phthalate-associated inhibition of 11β-HSD2. Lastly, we review the implications of these findings regarding identification, treatment, and prevention of the low-renin hypertension phenotype seen in premature infants categorized as having INH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BPD:

Bronchopulmonary dysplasia

PRA:

Plasma renin activity

HTN:

Hypertension

INH:

Idiopathic neonatal hypertension

DEHP:

Di-2-ethylhexyl phthalate

11β-HSD2:

11β-Hydroxysteroid dehydrogenase type 2

MR:

Mineralocorticoid receptor

ENaC:

Epithelial sodium channel

References  

  1. Adelman RD (1978) Neonatal hypertension. Pediatr Clin N Am 25:99–110

    Article  CAS  Google Scholar 

  2. Flynn JT (2000) Neonatal hypertension: diagnosis and management. Pediatr Nephrol 14:332–341

    Article  CAS  PubMed  Google Scholar 

  3. Batisky DL (2014) Neonatal hypertension. Clin Perinatol 41:529–542

    Article  PubMed  Google Scholar 

  4. Kent AL, Chaudhari T (2013) Determinants of neonatal blood pressure. Curr Hypertens Rep 15:426–432

    Article  PubMed  Google Scholar 

  5. Sahu R, Pannu H, Yu R, Shete S, Bricker JT, Gupta-Malhotra M (2013) Systemic hypertension requiring treatment in the neonatal intensive care unit. J Pediatr 163:84–88

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sheftel DN, Hustead V, Friedman A (1983) Hypertension screening in the follow-up of premature infants. Pediatrics 71:763–766

    Article  CAS  PubMed  Google Scholar 

  7. VanDeVoorde RG, Mitsnefes MM (2014) Neonatal hypertension. In: Chishti AS, Alam S, Kiessling S (eds) Kidney and urinary tract disease in the newborn. Springer, New York, pp 349–361

    Chapter  Google Scholar 

  8. Flynn JT (2012) Hypertension in the neonatal period. Curr Opin Pediatr 24:197–204

    Article  PubMed  Google Scholar 

  9. Friedman AL, Hustead VA (1987) Hypertension in babies following discharge from a neonatal intensive care unit. A 3 year follow-up. Pediatr Nephrol 1:30–34

    Article  CAS  PubMed  Google Scholar 

  10. Singh HP, Hurley RM, Myers TF (1992) Neonatal hypertension, incidence and risk factors. Am J Hypertens 5:51–55

    Article  CAS  PubMed  Google Scholar 

  11. Jenkins RD, Aziz JK, Gievers LL, Mooers HM, Fino N, Rozansky DJ (2017) Characteristics of hypertension in premature infants with and without chronic lung disease: a long-term multi-center study. Pediatr Nephrol 32:2115–2124

    Article  PubMed  Google Scholar 

  12. Jenkins R, Tackitt S, Gievers L, Iragorri S, Sage K, Cornwall T et al (2019) Phthalate-associated hypertension in premature infants: a prospective mechanistic cohort study. Pediatr Nephrol 34:1413–1424

    Article  PubMed  PubMed Central  Google Scholar 

  13. Farnbach K, Iragorri S, Al-Uzri A, Rozansky D, Forbush R, Jenkins R (2019) The changing spectrum of hypertension in premature infants. J Perinatol 39:1528–1534

    Article  CAS  PubMed  Google Scholar 

  14. Starr M, Wilson A (2022) Systemic hypertension in infants with bronchopulmonary dysplasia. Curr Hypertens Rep 24:193–203

    Article  PubMed  Google Scholar 

  15. Hjorten R, Flynn JT (2022) Neonatal hypertension. Clin Perinatol 49:27–42

    Article  PubMed  Google Scholar 

  16. Al Awad E, Yusuf K, Soraisham A, Obaid H, Sundaram A, Samedi V et al (2018) Transient hyperaldosteronism and neonatal hypertension: case series and literature review. J Clin Neonatol 7:185–189

    Article  Google Scholar 

  17. Kotchen TA, Strickland AL, Rice TW, Walters DR (1972) A study of the renin-angiotensin system in newborn infants. J Pediatr 80:938–946

    Article  CAS  PubMed  Google Scholar 

  18. Dillon MJ, Gillin ME, Ryness JM, deSwiet M (1976) Plasma renin activity and aldosterone concentration in the human newborn. Arch Dis Child 51:537–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Martinerie L, Pussard E, Foix-L’Helias L, Petit F, Cosson C, Boileau P, Lombes M (2009) Physiological partial aldosterone resistance in human newborns. Pediatr Res 66:325–328

    Article  Google Scholar 

  20. Leslie GI, Barr PA, Gallery EDM, Gyory AZ (1984) Role of renin and aldosterone in establishment of electrolyte balance in very low birthweight neonates. Aust Paediatr J 20:209–212

    CAS  PubMed  Google Scholar 

  21. Sulyok E, Nemeth M, Tenyi I, Csaba I, Gyory E, Ertl T et al (1979) Postnatal development of renin-angiotensin-aldosterone system, RAAS, in relation to electrolyte balance in premature infants. Pediatr Res 13:817–820

    Article  CAS  PubMed  Google Scholar 

  22. Zhou H, Satlin LM (2004) Renal potassium handling in healthy and sick newborns. Semin Perinatol 28:103–111

    Article  PubMed  Google Scholar 

  23. Satlin LM (1999) Regulation of potassium transport in the maturing kidney. Semin Nephrol 19:155–165

    CAS  PubMed  Google Scholar 

  24. New MI, Levine LS (1980) Hypertension of childhood with suppressed renin. Endocr Rev 1:421–430

    Article  CAS  PubMed  Google Scholar 

  25. DiMartino-Nardi J, New MI (1987) Low-renin hypertension of childhood. Pediatr Nephrol 1:99–108

    Article  CAS  PubMed  Google Scholar 

  26. Walker BR, Edwards CR (1994) Licorice-induced hypertension and syndromes of apparent mineralocorticoid excess. Endocrinol Metab Clin North Am 23:359–377

    Article  CAS  PubMed  Google Scholar 

  27. Trasande L, Sathyanarayana S, Spanier AJ, Trachtman H, Attina TM, Urbina EM (2013) Urinary phthalates are associated with higher blood pressure in childhood. J Pediatr 163:747-753.e1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shiue I (2014) Higher urinary heavy metal, phthalate, and arsenic but not parabens concentrations in people with high blood pressure, U.S. NHANES, 2011–2012. Int J Environ Res Public Health 11:5989–5999

    Article  PubMed  PubMed Central  Google Scholar 

  29. Flynn JT, Kaelber DC, Baker-Smith CM, Blowey D, Carroll AE, Daniels SR, de Ferranti SD, Dionne JM, Falkner B, Flinn SK, Gidding SS, Goodwin C, Leu MG, Powers ME, Rea C, Samuels J, Simasek M, Thaker VV, Urbina EM (2017) Subcommittee on screening and management of high blood pressure in clinical practice guideline for screening and management of high blood pressure in children and adolescents. Pediatrics 2:140

    Google Scholar 

  30. Zhao B, Chu Y, Huang Y, Hardy DO, Lin S, Ge R et al (2010) Structure-dependent inhibition of human and rat 11B-hydroxysteroid dehydrogenase 2 activities by phthalates. Chem Biol Interact 183:79–84

    Article  CAS  PubMed  Google Scholar 

  31. Subotic U, Hannmann T, Kiss M, Brade J, Breitkopf K, Loff S (2007) Extraction of the plasticizers diethylhexylphthalate and polyadipate from polyvinylchloride nasogastric tubes through gastric juice and feeding solution. J Pediatr Gastroenterol Nutr 44:71–76

    Article  CAS  PubMed  Google Scholar 

  32. Loff S, Kabs F, Subotic U, Schaible T, Reinecke F, Langbein M (2002) Kinetics of diethylhexyl-phthalate extraction from polyvinylchloride-infusion lines. J Parenter Enteral Nutr 26:305–309

    Article  CAS  Google Scholar 

  33. Loff S, Subotic U, Reinicke F, Wischmann H, Brade J (2004) Extraction of di-ethylhexyl-phthalate from perfusion lines of various material, length and brand by lipid emulsions. J Pediatr Gastroenterol Nutr 39:341–345

    Article  CAS  PubMed  Google Scholar 

  34. Latini G, De Felice C, Del Vecchio A, Barducci A, Ferri M, Chiellini F (2009) Di-(2-ethylhexyl)phthalate leakage and color changes in endotracheal tubes after application in high-risk newborns. Neonatology 95:317–323

    Article  CAS  PubMed  Google Scholar 

  35. Chiellini F, Ferri M, Latini G (2011) Physical-chemical assessment of di-(2-ethylhexyl)-phthalate leakage from poly(vinyl chloride) endotracheal tubes after application in high risk newborns. Int J Pharm 409:57–61

    Article  CAS  PubMed  Google Scholar 

  36. Green R, Hauser R, Calafat AM, Weuve J, Schettler T, Ringer S, Huttner K, Hu H (2005) Use of di(2-ethylhexyl) phthalate-containing medical products and urinary levels of mono(2-ethylhexyl) phthalate in neonatal intensive care unit infants. Environ Health Perspect 113:1222–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Weuve J, Sanchez BN, Calafat AM, Schettler T, Green RA, Hu H, Hauser R (2006) Exposure to phthalates in neonatal intensive care unit infants: urinary concentrations of monoesters and oxidative metabolites. Environ Health Perspect 114:1424–1431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Calafat AM, Needham LL, Silva MJ, Lambert G (2004) Exposure to di-(2-ethylhexyl) phthalate among premature neonates in a neonatal intensive care unit. Pediatrics 113:e429-434

    Article  PubMed  Google Scholar 

  39. Malarvannan G, Onghena M, Verstraete S, Van Puffelen E, Jacobs A, Vanhorebeek I et al (2019) Phthalate and alternative plasticizers in indwelling medical devices in pediatric intensive care units. J Hazard Mater 363:63–72

    Article  Google Scholar 

  40. Genay S, Luciani C, Decaudin B, Kambia N, Dine T, Odou P et al (2011) Experimental study on infusion devices containing polyvinyl chloride: to what extent are they di(2-ethylhexy) phthalate-free? Int J Pharm 412:47–51

    Article  CAS  PubMed  Google Scholar 

  41. Nielsen BS, Andersen DN, Giovalle E, Bjergstrom M, Larsen PB (2014) Alternatives to classified phthalaes in medical devices. Environmental project No 1557. The Danish Environmental Protection Agency. https://www2.mst.dk/udgiv/publications/2014/03/978-87-93178-27-4.pdf

  42. Jenkins R, Ondusko D, Montrose L, Forbush R, Rozansky D (2021) Phthalate exposures in the neonatal intensive care unit. Toxics 9:90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jenkins R (2021) Reducing toxic phthalate exposures in premature infants. In: Barria RM (ed) Topics on critical issues in neonatal care. Intech Open, London, pp 89–107

  44. Mallow EB, Fox MA (2014) Phthalates and critically ill neonates: device-related exposures and non-endocrine toxic risks. J Perinatol 34:892–897

    Article  CAS  PubMed  Google Scholar 

  45. Jenkins R, Farnbach K, Iragorri S (2021) Elimination of intravenous di-2-ethylhexyl phthalate exposure abrogates most neonatal hypertension in premature infants with bronchopulmonary dysplasia. Toxics 9:75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ma X, Lian Q-Q, Dong Q, Ge R-S (2011) Environmental inhibitors of 11b-hydroxysteroid dehydrogenase type 2. Toxicology 285:83–89

    Article  CAS  PubMed  Google Scholar 

  47. KochHM BHM, Preuss R, Angerer J (2005) New metabolites of di(2-ethylhexyl)phthalate (DEHP) in human urine and serum after single oral doses of deuterium-labelled DEPH. Arch Toxicol 79:365–376

    Google Scholar 

  48. Meltzer D, Martinez-Arguelles DB, Campioli E, Lee S, Papadopoulos V (2015) In utero exposure to the endocrine disruptor di(2-ethylhexyl) phthalate targets ovarian theca cells and steroidogenesis in the adult female rat. Reprod Toxicol 51:47–56

    Article  CAS  PubMed  Google Scholar 

  49. Bergman A, Heindel JJ et al (2013) State of the science of endocrine disrupting chemicals 2012: summary for decision-makers. World Health Organization, United Nations Environment Programme, Inter-Organization Programme for the Sound Management of Chemicals. https://apps.who.int/iris/handle/10665/78102

  50. Montrose L, Padmanabhan V, Goodrich JM, Domino SE, Treadwell MC, Meeker JD, Watkins DJ, Dolinoy DC (2018) Maternal levels of endocrine disrupting chemicals in the first trimester of pregnancy are associated with infant cord blood DNA methylation. Epigenetics 13:301–309

    Article  PubMed  PubMed Central  Google Scholar 

  51. Stroustrup A, Bragg JB, Andra SS, Curtin PC, Spear EA, Sison DB et al (2018) Neonatal intensive care unit phthalate exposure and preterm infant neurobehavioral performance. PLoS One 13:e0193835

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wang Y, Zhu H, Kannan K (2019) A review of biomonitoring of phthalate exposures. Toxics 7:21

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. Stout and M. Jenkins for the editing support and D. Rozansky for the scientific content and graphic support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randall D. Jenkins.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jenkins, R.D. Phthalates cause a low-renin phenotype commonly found in premature infants with idiopathic neonatal hypertension. Pediatr Nephrol 38, 1717–1724 (2023). https://doi.org/10.1007/s00467-022-05773-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-022-05773-1

Keywords

Navigation