Skip to main content

Advertisement

Log in

Serum osmolality and hyperosmolar states

  • Educational Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Serum osmolality is the sum of the osmolalities of every single dissolved particle in the blood such as sodium and associated anions, potassium, glucose, and urea. Under normal conditions, serum sodium concentration is the major determinant of serum osmolality. Effective blood osmolality, so-called blood tonicity, is created by the endogenous (e.g., sodium and glucose) and exogenous (e.g., mannitol) solutes that are capable of creating an osmotic gradient across the membranes. In case of change in effective blood osmolality, water shifts from the compartment with low osmolality into the compartment with high osmolarity in order to restore serum osmolality. The difference between measured osmolality and calculated osmolarity forms the osmolal gap. An increase in serum osmolal gap can stem from the presence of solutes that are not included in the osmolarity calculation, such as hypertonic treatments or toxic alcoholic ingestions. In clinical practice, determination of serum osmolality and osmolal gap is important in the diagnosis of disorders related to sodium, glucose and water balance, kidney diseases, and small molecule poisonings. As blood hypertonicity exerts its main effects on the brain cells, neurologic symptoms varying from mild neurologic signs and symptoms to life-threatening outcomes such as convulsions or even death may occur. Therefore, hypertonic states should be promptly diagnosed and cautiously managed. In this review, the causes and treatment strategies of hyperosmolar conditions including hypernatremia, diabetic ketoacidosis, hyperglycemic hyperosmolar syndrome, hypertonic treatments, or intoxications are discussed in detail to increase awareness of this important topic with significant clinical consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Argyropoulos C, Rondon-Berrios H, Raj DS, Malhotra D, Agaba EI, Rohrscheib M, Khitan Z, Murata GH, Shapiro JI, Tzamaloukas AH (2016) Hypertonicity: pathophysiologic concept and experimental studies. Cureus 8(5):e596. https://doi.org/10.7759/cureus.596

  2. Star RA (1990) Hyperosmolar states. Am J Med Sci 300:402–412. https://doi.org/10.1097/00000441-199012000-00012

    Article  CAS  PubMed  Google Scholar 

  3. Griveas I, Gompou A, Kyritsis I, Papatheodorou G, Agroyannis I, Tsakoniatis M, Kapeleris E, Vrachnes S (2012) Osmolal gap in hemodialyzed uremic patients. Artif Organs 36:16–20. https://doi.org/10.1111/j.1525-1594.2011.01293.x

    Article  CAS  PubMed  Google Scholar 

  4. Najem O, Shah MM, De Jesus O (2022) Serum osmolality. In: StatPearls [Internet]. Treasure Island, FL, StatPearls Publishing

  5. Rondon-Berrios H, Argyropoulos C, Ing TS, Raj DS, Malhotra D, Agaba EI, Rohrscheib M, Khitan ZJ, Murata GH, Shapiro JI, Tzamaloukas AH (2017) Hypertonicity: clinical entities, manifestations and treatment. World J Nephrol 6:1–13. https://doi.org/10.5527/wjn.v6.i1.1

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kruse JA, Cadnapaphornchai P (1994) The serum osmole gap. J Crit Care 9:185–197. https://doi.org/10.1016/0883-9441(94)90015-9

    Article  CAS  PubMed  Google Scholar 

  7. Fazekas AS, Funk GC, Klobassa DS, Rüther H, Ziegler I, Zander R, Semmelrock HJ (2013) Evaluation of 36 formulas for calculating plasma osmolality. Intensive Care Med 39:302–308. https://doi.org/10.1007/s00134-012-2691-0

    Article  PubMed  Google Scholar 

  8. Gennari FJ (1984) Current concepts. Serum osmolality. Uses and limitations. N Engl J Med 310:102–105. https://doi.org/10.1056/NEJM198401123100207

    Article  CAS  PubMed  Google Scholar 

  9. Blum J, Mehler PS (2007) Hyperglycemic hyperosmolar syndrome. In: Parsons PE, Wiener-Kronish JP (eds) Critical Care Secrets, 4th edn. Mosby Elsevier, Philadelphia, pp 323–327

    Chapter  Google Scholar 

  10. Kraut JA, Kurtz I (2008) Toxic alcohol ingestions: clinical features, diagnosis, and management. Clin J Am Soc Nephrol 3:208–225. https://doi.org/10.2215/CJN.03220807

    Article  CAS  PubMed  Google Scholar 

  11. Smithline N, Gardner KD Jr (1976) Gaps–anionic and osmolal. JAMA 236:1594–1597. https://doi.org/10.1001/jama.236.14.1594

    Article  CAS  PubMed  Google Scholar 

  12. Madden N, Trachtman H (2016) Physiology of the developing kidney: sodium and water homeostasis and its disorders. In: Avner ED, Harmon WE, Niaudet P, Yoshikawa N, Emma F, Goldstein SL (eds) Pediatric Nephrology, 7th edn. Springer-Verlag, Berlin and Heidelberg, pp 181–217

    Chapter  Google Scholar 

  13. Bhave G, Neilson EG (2011) Body fluid dynamics: back to the future. J Am Soc Nephrol 22:2166–2181. https://doi.org/10.1681/ASN.2011080865

    Article  CAS  PubMed  Google Scholar 

  14. Seay NW, Lehrich RW, Greenberg A (2020) Diagnosis and management of disorders of body tonicity-hyponatremia and hypernatremia: core curriculum. Am J Kidney Dis 75:272–286. https://doi.org/10.1053/j.ajkd.2019.07.014

    Article  CAS  PubMed  Google Scholar 

  15. Bianchetti MG, Simonetti GD, Lava SAG, Bettinelli A (2016) Differential diagnosis and management of fluid, electrolyte and acid-base disorders. In: Geary DF, Schaefer F (eds) Pediatric Kidney Disease, 2nd edn. Springer-Verlag, Berlin, pp 825–881

    Chapter  Google Scholar 

  16. Ackerman GL (1990) Serum sodium. In: Walker HK, Hall WD, Hurst JW (eds) Clinical methods: the history, physical, and laboratory examinations, 3rd edn. Butterworths, Boston, Chapter 194

  17. Dennen P, Linas SL (2014) Hypernatremia. In: Gilbert SJ, Weiner DE, Gipson DS, Perazella MA, Tonelli M (eds) National Kidney Foundation Primer on Kidney Diseases, 6th edn. Elsevier Saunders, Philadelphia, pp 71–79

    Chapter  Google Scholar 

  18. Jéquier E, Constant F (2010) Water as an essential nutrient: the physiological basis of hydration. Eur J Clin Nutr 64:115–123. https://doi.org/10.1038/ejcn.2009.111

    Article  CAS  PubMed  Google Scholar 

  19. Bonventre JV, Leaf A (1982) Sodium homeostasis: steady states without a set point. Kidney Int 21:880–883. https://doi.org/10.1038/ki.1982.113

    Article  CAS  PubMed  Google Scholar 

  20. Shaikh G, Sehgal R, Sandhu S, Vaddineni S, Fogel J, Rubinstein S (2014) Changes in osmol gap in chronic kidney disease: an exploratory study. Ren Fail 36:198–201. https://doi.org/10.3109/0886022X.2013.838052

    Article  CAS  PubMed  Google Scholar 

  21. Oostvogels R, Kemperman H, Hubeek I, ter Braak EWMT (2013) The importance of the osmolality gap in ethylene glycol intoxication. BMJ 347:f6904. https://doi.org/10.1136/bmj.f6904

  22. Atluri P, Vasireddy D, Malayala SV (2021) Toxic alcohol ingestion: a case report and review of management pathways. Cureus 13(2):e13092. https://doi.org/10.7759/cureus.13092

  23. Weissenborn K, Lockwood AH (2016) Toxic and metabolic encephalopathies. In: Daroff RB, Jankovic J, Mazziotta JC, Pomeroy SL (eds) Bradley’s Neurology in Clinical Practice, 7th edn. Elsevier, London, pp 1209–1225

    Google Scholar 

  24. Wilson MMG (2007) Thirst and hydration. In: Birren JE (ed) Encyclopedia of Gerontology, 2nd edn. Academic Press, Oxford and San Diego, pp 630–634

    Chapter  Google Scholar 

  25. Latcha S, Lubetzky M, Weinstein AM (2011) Severe hyperosmolarity and hypernatremia in an adipsic young woman. Clin Nephrol 76:407–411. https://doi.org/10.5414/cn106617

    Article  CAS  PubMed  Google Scholar 

  26. Goff DA, Higinio V (2009) Hypernatremia. Pediatr Rev 30:412–413. https://doi.org/10.1542/pir.30-10-412

    Article  PubMed  Google Scholar 

  27. Kumbar L, Yusufani R (2021) Hypernatremia. In: Ferri FF (ed) Ferri’s Clinical Advisor. Elsevier, Philadelphia, pp 732–734

    Google Scholar 

  28. Allison SP (2003) Dehydration. In: Caballero B (ed) Encyclopedia of Food Sciences and Nutrition, 2nd edn. Academic Press, Cambridge, MA, pp 1740–1743. https://doi.org/10.1016/B0-12-227055-X/00323-0

  29. Kamel KS, Halperin ML (2017) Sodium and water physiology. In: Kamel KS, Halperin ML (eds) Fluid, electrolyte and acid-base physiology, 5th edn. Elsevier, Philadelphia, pp 216–263

    Google Scholar 

  30. Kim SW (2006) Hypernatemia: successful treatment. Electrolyte Blood Press 4:66–71. https://doi.org/10.5049/EBP.2006.4.2.66

    Article  PubMed  PubMed Central  Google Scholar 

  31. Blohm E, Goldberg A, Salerno A, Jenny C, Boyer E, Babu K (2018) Recognition and management of pediatric salt toxicity. Pediatr Emerg Care 34:820–824. https://doi.org/10.1097/PEC.0000000000001340

    Article  PubMed  Google Scholar 

  32. Leung C, Chang WC, Yeh SJ (2009) Hypernatremic dehydration due to concentrated infant formula: report of two cases. Pediatr Neonatol 50:70–73. https://doi.org/10.1016/S1875-9572(09)60036-X

    Article  PubMed  Google Scholar 

  33. Liamis G, Liberopoulos E, Barkas F, Elisaf M (2014) Diabetes mellitus and electrolyte disorders. World J Clin Cases 2:488–496. https://doi.org/10.12998/wjcc.v2.i10.488

    Article  PubMed  PubMed Central  Google Scholar 

  34. Popli S, Tzamaloukas AH, Ing TS (2014) Osmotic diuresis-induced hypernatremia: better explained by solute-free water clearance or electrolyte-free water clearance? Int Urol Nephrol 46:207–210. https://doi.org/10.1007/s11255-012-0353-3

    Article  PubMed  Google Scholar 

  35. Agrawal S, Baird GL, Quintos JB, Reinert SE, Gopalakrishnan G, Boney CM, Topor LS (2018) Pediatric diabetic ketoacidosis with hyperosmolarity: clinical characteristics and outcomes. Endocr Pract 24:726–732. https://doi.org/10.4158/EP-2018-0120

    Article  PubMed  Google Scholar 

  36. Wolfsdorf JI, Glaser N, Agus M, Fritsch M, Hanas R, Rewers A, Sperling MA, Codner E (2018) ISPAD Clinical Practice Consensus Guidelines 2018: diabetic ketoacidosis and the hyperglycemic hyperosmolar state. Pediatr Diabetes 19(Suppl 27):155–177. https://doi.org/10.1111/pedi.12701

    Article  PubMed  Google Scholar 

  37. Rumph KW, Kaiser H, Gröne HJ, Trapp VE, Meinck HM, Goebel HH, Kunze E, Kreuzer H, Scheler F (1981) Myoglobinuric renal failure in hyperosmolar diabetic coma (author’s transl). Dtsch Med Wschr 106:708–711. https://doi.org/10.1055/s-2008-1070386

    Article  Google Scholar 

  38. Annangi S, Nutalapati S, Naramala S, Yarra P, Bashir K (2020) Uremia preventing osmotic demyelination syndrome despite rapid hyponatremia correction. J Investig Med High Impact Case Rep 8:2324709620918095. https://doi.org/10.1177/2324709620918095

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hagstam KE, Lindergård B, Tibbling G (1969) Mannitol infusion in regular haemodialysis treatment for chronic renal insufficiency. Scand J Urol Nephrol 3:257–263. https://doi.org/10.3109/00365596909135413

    Article  CAS  PubMed  Google Scholar 

  40. Rodrigo F, Shideman J, McHugh R, Buselmeier T, Kjellstrand C (1977) Osmolality changes during hemodialysis. Natural history, clinical correlations, and influence of dialysate glucose and intravenous mannitol. Ann Intern Med 86:554–561. https://doi.org/10.7326/0003-4819-86-5-554

    Article  CAS  PubMed  Google Scholar 

  41. Silver SM, Sterns RH, Halperin ML (1996) Brain swelling after dialysis: old urea or new osmoles? Am J Kidney Dis 28:1–13. https://doi.org/10.1016/s0272-6386(96)90124-9

    Article  CAS  PubMed  Google Scholar 

  42. Arieff AI, Massry SG, Barrientos A, Kleeman CR (1973) Brain water and electrolyte metabolism in uremia: effects of slow and rapid hemodialysis. Kidney Int 4:177–187. https://doi.org/10.1038/ki.1973.100

    Article  CAS  PubMed  Google Scholar 

  43. Dursun H, Noyan A, Cengiz N, Attila G, Buyukcelik M, Soran M, Seydaoglu G, Bayazit AK, Anarat A (2007) Changes in osmolal gap and osmolality in children with chronic and end-stage renal failure. Nephron Physiol 105:19–21. https://doi.org/10.1159/000097604

    Article  Google Scholar 

  44. Lutters B, Koehler PJ, Wijdicks EF (2020) Worth their salt: one hundred years of hyperosmolar therapy. Eur Neurol 83:536–541. https://doi.org/10.1159/000510183

    Article  PubMed  Google Scholar 

  45. Peters NA, Farrell LB, Smith JP (2018) Hyperosmolar therapy for the treatment of cerebral edema. US Pharm 43:HS-8-HS-11

  46. Prough DS, Johnson JC, Stump DA, Stullken EH, Poole GV Jr, Howard G (1986) Effects of hypertonic saline versus lactated Ringer’s solution on cerebral oxygen transport during resuscitation from hemorrhagic shock. J Neurosurg 64:627–632. https://doi.org/10.3171/jns.1986.64.4.0627

    Article  CAS  PubMed  Google Scholar 

  47. Kheirbek T, Pascual JL (2014) Hypertonic saline for the treatment of intracranial hypertension. Curr Neurol Neurosci Rep 14:482. https://doi.org/10.1007/s11910-014-0482-4

    Article  PubMed  Google Scholar 

  48. Diringer MN (2013) New trends in hyperosmolar therapy? Curr Opin Crit Care 19:77–82. https://doi.org/10.1097/MCC.0b013e32835eba30

    Article  PubMed  PubMed Central  Google Scholar 

  49. Stein MR (2010) The new generation of liquid intravenous immunoglobulin formulations in patient care: a comparison of intravenous immunoglobulins. Postgrad Med 122:176–184. https://doi.org/10.3810/pgm.2010.09.2214

    Article  PubMed  Google Scholar 

  50. Bucher AM, De Cecco CN, Schoepf UJ, Meinel FG, Krazinski AW, Spearman JV, McQuiston AD, Wang R, Bucher J, Vogl TJ, Katzberg RW (2014) Is contrast medium osmolality a causal factor for contrast-induced nephropathy? Biomed Res Int 2014:931413. https://doi.org/10.1155/2014/931413

    Article  PubMed  PubMed Central  Google Scholar 

  51. Andreucci M, Solomon R, Tasanarong A (2014) Side effects of radiographic contrast media: pathogenesis, risk factors, and prevention. Biomed Res Int 2014:741018. https://doi.org/10.1155/2014/741018

    Article  PubMed  PubMed Central  Google Scholar 

  52. Laerum F (1987) Cytotoxic effects of six angiographic contrast media on human endothelium in culture. Acta Radiol 28:99–105

    Article  CAS  PubMed  Google Scholar 

  53. Verghese PS (2014) Contrast nephropathy in children. J Pediatr Intensive Care 3:45–52. https://doi.org/10.3233/PIC-14090

    Article  PubMed  PubMed Central  Google Scholar 

  54. Glaser DS (1996) Utility of the serum osmol gap in the diagnosis of methanol or ethylene glycol ingestion. Ann Emerg Med 27:343–346. https://doi.org/10.1016/s0196-0644(96)70271-8

    Article  CAS  PubMed  Google Scholar 

  55. Greene HR, Krasowski MD (2019) Correlation of osmolal gap with measured concentrations of acetone, ethylene glycol, isopropanol, methanol, and propylene glycol in patients at an academic medical center. Toxicol Rep 7:81–88. https://doi.org/10.1016/j.toxrep.2019.12.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pizon AF, Brooks DE (2006) Hyperosmolality: another indication for hemodialysis following acute ethylene glycol poisoning. Clin Toxicol (Phila) 44:181–183. https://doi.org/10.1080/15563650500514582

    Article  CAS  PubMed  Google Scholar 

  57. Lee CS, Auld J (2015) Heart failure: a primer. Crit Care Nurs Clin North Am 27:413–425. https://doi.org/10.1016/j.cnc.2015.07.009

    Article  PubMed  Google Scholar 

  58. Pazmiño PA, Pazmiño BP (1993) Treatment of acute hypernatremia with hemodialysis. Am J Nephrol 13:260–265. https://doi.org/10.1159/000168630

    Article  PubMed  Google Scholar 

  59. Macaulay D, Watson M (1967) Hypernatraemia in infants as a cause of brain damage. Arch Dis Child 42:485–491. https://doi.org/10.1136/adc.42.225.485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jha AA, Behera V, Jairam A, Baliga KV (2014) Osmotic demyelination syndrome in a normonatremic patient of chronic kidney disease. Indian J Crit Care Med 18:609–611. https://doi.org/10.4103/0972-5229.140153

    Article  PubMed  PubMed Central  Google Scholar 

  61. Shen Y, Cheng X, Ying M, Chang HT, Zhang W (2017) Association between serum osmolarity and mortality in patients who are critically ill: a retrospective cohort study. BMJ Open 7(5):e015729. https://doi.org/10.1136/bmjopen-2016-015729

  62. Nicholson T, Bennett K, Silke B (2012) Serum osmolarity as an outcome predictor in hospital emergency medical admissions. Eur J Intern Med 23:e39–e43. https://doi.org/10.1016/j.ejim.2011.06.014

    Article  PubMed  Google Scholar 

  63. Alshayeb HM, Showkat A, Babar F, Mangold T, Wall BM (2011) Severe hypernatremia correction rate and mortality in hospitalized patients. Am J Med Sci 341:356–360. https://doi.org/10.1097/MAJ.0b013e31820a3a90

    Article  PubMed  Google Scholar 

  64. Holtfreter B, Bandt C, Kuhn SO, Grunwald U, Lehmann C, Schütt C, Gründling M (2006) Serum osmolality and outcome in intensive care unit patients. Acta Anaesthesiol Scand 50:970–977. https://doi.org/10.1111/j.1399-6576.2006.01096.x

    Article  CAS  PubMed  Google Scholar 

  65. Rohla M, Freynhofer MK, Tentzeris I, Farhan S, Wojta J, Huber K, Weiss TW (2014) Plasma osmolality predicts clinical outcome in patients with acute coronary syndrome undergoing percutaneous coronary intervention. Eur Heart J Acute Cardiovasc Care 3:84–92. https://doi.org/10.1177/2048872613516018

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahar Büyükkaragöz.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Answers:

1. c; 2. e; 3. b; 4. d

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Büyükkaragöz, B., Bakkaloğlu, S.A. Serum osmolality and hyperosmolar states. Pediatr Nephrol 38, 1013–1025 (2023). https://doi.org/10.1007/s00467-022-05668-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-022-05668-1

Keywords

Navigation