Skip to main content
Log in

Improved equations to estimate GFR in Chinese children with chronic kidney disease

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

There is currently no specific equation for estimating glomerular filtration rate (GFR) in Chinese children with chronic kidney disease (CKD). The commonly used equations are less robust than expected; we therefore sought to derive more appropriate equations for GFR estimation.

Methods

A total of 751 Chinese children with CKD were divided into 2 groups, training group (n = 501) and validation group (n = 250). In the training group, a univariate linear regression model was used to calculate predictability of variables associated with GFR. Residuals were compared to determine multivariate predictability of GFR in the equation. Standard regression techniques for Gaussian data were used to determine coefficients of GFR-estimating equations after logarithmic transformation of measured GFR (iGFR), height/serum creatinine (height/Scr), cystatin C, blood urea nitrogen (BUN), and height. These were compared with other well-known equations using the validation group.

Results

Median 99mTc-DTPA GFR was 90.1 (interquartile range: 67.3–108.6) mL/min/1.73 m2 in training dataset. Our CKD equation, eGFR (mL/min/1.73 m2) = 91.021 [height(m)/Scr(mg/dL)/2.7]0.443 [1.2/Cystatin C(mg/L)]0.335 [13.7/BUN (mg/dL)]−0.095 [ 0.991male] [height(m)/1.4]0.275, was derived. This was further tested in the validation group, with percentages of eGFR values within 30% and 15% of iGFR (P30 and P15) of 76.00% and 48.40%, respectively. For centres with no access to cystatin C, a creatinine-based equation, eGFR (mL/min/1.73 m2) = 89.674 [height(m)/Scr(mg/dL)/2.7]0.579 [ 1.007male] [height(m)/1.4]0.187, was derived, with P30 and P15 73.60% and 49.20%, respectively. These were significantly higher compared to other well-known equations (p < 0.05).

Conclusion

We developed equations for GFR estimation in Chinese children with CKD based on Scr, BUN and cystatin C. These are more accurate than commonly used equations in this population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ali I, Kalra P (2019) Risk prediction in chronic kidney disease. Curr Opin Nephrol Hypertens 28:513–518

    Article  CAS  Google Scholar 

  2. Lv JC, Zhang LX (2019) Prevalence and disease burden of chronic kidney disease. Adv Exp Med Biol 1165:3–15

    Article  CAS  Google Scholar 

  3. Chen TK, Knicely DH, Grams ME (2019) Chronic kidney disease diagnosis and management: a review. JAMA 322:1294–1304

    Article  CAS  Google Scholar 

  4. Desai N, Lora CM, Lash JP, Ricardo AC (2019) CKD and ESRD in US Hispanics. Am J Kidney Dis 73:102–111

    Article  Google Scholar 

  5. Levey AS, Coresh J, Tighiouart H, Greene T, Inker LA (2020) Measured and estimated glomerular filtration rate: current status and future directions. Nat Rev Nephrol 16:51–64

    Article  Google Scholar 

  6. Glassock RJ, Warnock DG, Delanaye P (2017) The global burden of chronic kidney disease: estimates, variability and pitfalls. Nat Rev Nephrol 13:104–114

    Article  CAS  Google Scholar 

  7. Schwartz GJ, Munoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, Furth SL (2009) SWZ2009 New equations to estimate GFR in children with CKD. J Am Soc Nephrol 20:629–637

    Article  Google Scholar 

  8. Grubb A, Horio M, Hansson LO, Bjork J, Nyman U, Flodin M, Larsson A et al (2014) Generation of a new cystatin C-based estimating equation for glomerular filtration rate by use of 7 assays standardized to the international calibrator. Clin Chem 60:974–986

    Article  CAS  Google Scholar 

  9. Sudchada P, Laehn S (2016) Comparisons of GFR estimation using the CKD Epidemiology Collaboration (CKD-EPI) equation and other creatinine-based equations in Asian population: a systematic review. Int Urol Nephrol 48:1511–1517

    Article  CAS  Google Scholar 

  10. Teo BW, Zhang L, Guh JY, Tang SCW, Jha V, Kang DH, Tanchanco R et al (2018) Glomerular Filtration Rates in Asians. Adv Chronic Kidney Dis 25:41–48

    Article  Google Scholar 

  11. Delanaye P, Mariat C (2013) The applicability of eGFR equations to different populations. Nat Rev Nephrol 9:513–522

    Article  CAS  Google Scholar 

  12. Lear SA, Kohli S, Bondy GP, Tchernof A, Sniderman AD (2009) Ethnic variation in fat and lean body mass and the association with insulin resistance. J Clin Endocrinol Metab 94:4696–4702

    Article  CAS  Google Scholar 

  13. Van Der Werf A, JaE L, Van Der Schueren De, MaE NSA, Van Der Pant K, Blauwhoff-Buskermolen S, Wierdsma NJ (2018) Percentiles for skeletal muscle index, area and radiation attenuation based on computed tomography imaging in a healthy Caucasian population. Eur J Clin Nutr 72:288–296

    Article  Google Scholar 

  14. Liu J, Yan Y, Xi B, Huang G, Mi J, China C, Adolescent Cardiovascular Health Study Group (2019) skeletal muscle reference for Chinese children and adolescents. J Cachexia Sarcopenia Muscle 10:155–164

  15. Mccarthy HD, Samani-Radia D, Jebb SA, Prentice AM (2014) Skeletal muscle mass reference curves for children and adolescents. Pediatr Obes 9:249–259

    Article  CAS  Google Scholar 

  16. Wang F, Yao Y, Zhu SN, Huang JP, Xiao HJ, Ding J, Sai YP (2010) Evaluation of the applicability of three prediction equations for estimating glomerular filtration rate in children with chronic kidney disease. Zhonghua Er Ke Za Zhi 48:855–859

    Google Scholar 

  17. Solomon R, Goldstein S (2017) Real-time measurement of glomerular filtration rate. Curr Opin Crit Care 23:470–474

    Article  Google Scholar 

  18. Mian AN, Schwartz GJ (2017) Measurement and estimation of glomerular filtration rate in children. Adv Chronic Kidney Dis 24:348–356

    Article  Google Scholar 

  19. Zhang R, Chen M, Liu TT, Lu JJ, Lv CL (2020) Comparison of the predictive performance between cystatin C and serum creatinine by vancomycin via a population pharmacokinetic models: a prospective study in a Chinese population. Eur J Drug Metab Pharmacokinet 45:135–149

    Article  CAS  Google Scholar 

  20. (2013) Chapter 1: Definition and classification of CKD. Kidney Int Suppl (2011) 3:19–62

  21. Blaufox MD, Aurell M, Bubeck B, Fommei E, Piepsz A, Russell C, Taylor A et al (1996) Report of the radionuclides in nephrourology committee on renal clearance. J Nucl Med 37:1883–1890

    CAS  Google Scholar 

  22. Gates GF (1983) Split renal function testing using Tc-99m DTPA. A rapid technique for determining differential glomerular filtration. Clin Nucl Med 8:400–407

    Article  CAS  Google Scholar 

  23. Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16:31–41

    Article  CAS  Google Scholar 

  24. Schwartz GJ, Brion LP, Spitzer A (1987) The use of plasma creatinine concentration for estimating glomerular filtration rate in infants, children, and adolescents. Pediatr Clin North Am 34:571–590

    Article  CAS  Google Scholar 

  25. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D (1999) A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med 130:461–470

    Article  CAS  Google Scholar 

  26. Lee CK, Swinford RD, Cerda RD, Portman RJ, Hwang W, Furth SL (2012) Evaluation of serum creatinine concentration-based glomerular filtration rate equations in pediatric patients with chronic kidney disease. Pharmacotherapy 32:642–648

    Article  CAS  Google Scholar 

  27. Grubb A, Nyman U, Bjork J, Lindstrom V, Rippe B, Sterner G, Christensson A (2005) Simple cystatin C-based prediction equations for glomerular filtration rate compared with the modification of diet in renal disease prediction equation for adults and the Schwartz and the Counahan-Barratt prediction equations for children. Clin Chem 51:1420–1431

    Article  CAS  Google Scholar 

  28. Filler G, Lepage N (2003) Should the Schwartz formula for estimation of GFR be replaced by cystatin C formula? Pediatr Nephrol 18:981–985

    Article  Google Scholar 

  29. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, Kusek JW et al (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150:604–612

    Article  Google Scholar 

  30. Inker LA, Schmid CH, Tighiouart H, Eckfeldt JH, Feldman HI, Greene T, Kusek JW et al (2012) Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med 367:20–29

    Article  CAS  Google Scholar 

  31. Schwartz GJ, Schneider MF, Maier PS, Moxey-Mims M, Dharnidharka VR, Warady BA, Furth SL et al (2012) Improved equations estimating GFR in children with chronic kidney disease using an immunonephelometric determination of cystatin C. Kidney Int 82:445–453

    Article  CAS  Google Scholar 

  32. Nagai T, Uemura O, Ishikura K, Ito S, Hataya H, Gotoh Y, Fujita N et al (2013) Creatinine-based equations to estimate glomerular filtration rate in Japanese children aged between 2 and 11 years old with chronic kidney disease. Clin Exp Nephrol 17:877–881

    Article  CAS  Google Scholar 

  33. Uemura O, Nagai T, Ishikura K, Ito S, Hataya H, Gotoh Y, Fujita N et al (2014) Cystatin C-based equation for estimating glomerular filtration rate in Japanese children and adolescents. Clin Exp Nephrol 18:718–725

    Article  CAS  Google Scholar 

  34. Pottel H, Hoste L, Dubourg L, Ebert N, Schaeffner E, Eriksen BO, Melsom T et al (2016) An estimated glomerular filtration rate equation for the full age spectrum. Nephrol Dial Transplant 31:798–806

    Article  Google Scholar 

  35. Earley A, Miskulin D, Lamb EJ, Levey AS, Uhlig K (2012) Estimating equations for glomerular filtration rate in the era of creatinine standardization: a systematic review. Ann Intern Med 156:785–795

    Article  Google Scholar 

  36. Filler G, Yasin A, Medeiros M (2014) Methods of assessing renal function. Pediatr Nephrol 29:183–192

    Article  Google Scholar 

  37. Li DY, Yin WJ, Yi YH, Zhang BK, Zhao J, Zhu CN, Ma RR et al (2019) Development and validation of a more accurate estimating equation for glomerular filtration rate in a Chinese population. Kidney Int 95:636–646

    Article  Google Scholar 

  38. Soveri I, Berg UB, Bjork J, Elinder CG, Grubb A, Mejare I, Sterner G et al (2014) Measuring GFR: a systematic review. Am J Kidney Dis 64:411–424

    Article  Google Scholar 

  39. Perrone RD, Steinman TI, Beck GJ, Skibinski CI, Royal HD, Lawlor M, Hunsicker LG (1990) Utility of radioisotopic filtration markers in chronic renal insufficiency: simultaneous comparison of 125I-iothalamate, 169Yb-DTPA, 99mTc-DTPA, and inulin. The Modification of Diet in Renal Disease Study. Am J Kidney Dis 16:224–235

    Article  CAS  Google Scholar 

  40. Chang H, Ye SD (2015) Application of modified glomerular filtration rate estimation equations in Chinese diabetic patients with chronic kidney diseases. West Indian Med J 64:209–212

    CAS  Google Scholar 

  41. Kittiskulnam P, Tiskajornsiri K, Katavetin P, Chaiwatanarat T, Eiam-Ong S, Praditpornsilpa K (2020) The failure of glomerular filtration rate estimating equations among obese population. PLoS One 15:e0242447

  42. Zhang L, Wang F, Wang L, Wang W, Liu B, Liu J, Chen M et al (2012) Prevalence of chronic kidney disease in China: a cross-sectional survey. Lancet 379:815–822

    Article  Google Scholar 

  43. Harambat J, Van Stralen KJ, Kim JJ, Tizard EJ (2012) Epidemiology of chronic kidney disease in children. Pediatr Nephrol 27:363–373

    Article  Google Scholar 

  44. Huong NT, Long TD, Bouissou F, Liem NT, Truong DM, Nga Do K, Chien TT et al (2009) Chronic kidney disease in children: the National Paediatric Hospital experience in Hanoi, Vietnam. Nephrology (Carlton) 14:722–727

    Article  Google Scholar 

  45. Chehade H, Cachat F, Jannot AS, Meyrat BJ, Mosig D, Bardy D, Parvex P et al (2014) New combined serum creatinine and cystatin C quadratic formula for GFR assessment in children. Clin J Am Soc Nephrol 9:54–63

    Article  CAS  Google Scholar 

  46. Bjork J, Nyman U, Berg U, Delanaye P, Dubourg L, Goffin K, Grubb A et al (2019) Validation of standardized creatinine and cystatin C GFR estimating equations in a large multicentre European cohort of children. Pediatr Nephrol 34:1087–1098

    Article  Google Scholar 

  47. Delanaye P, Cavalier E, Cristol JP, Delanghe JR (2014) Calibration and precision of serum creatinine and plasma cystatin C measurement: impact on the estimation of glomerular filtration rate. J Nephrol 27:467–475

    Article  CAS  Google Scholar 

  48. Den Bakker E, Gemke R, JaE VW, Hubeek I, Stoffel-Wagner B, Bokenkamp A (2018) Combining GFR estimates from cystatin C and creatinine-what is the optimal mix? Pediatr Nephrol 33:1553–1563

    Article  Google Scholar 

  49. Inker LA, Astor BC, Fox CH, Isakova T, Lash JP, Peralta CA, Kurella Tamura M et al (2014) KDOQI US commentary on the 2012 KDIGO clinical practice guideline for the evaluation and management of CKD. Am J Kidney Dis 63:713–735

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Du.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y., Hou, L., Sun, T. et al. Improved equations to estimate GFR in Chinese children with chronic kidney disease. Pediatr Nephrol 38, 237–247 (2023). https://doi.org/10.1007/s00467-022-05552-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-022-05552-y

Keywords

Navigation