Skip to main content

Advertisement

Log in

Considerations and possibilities for sodium-glucose cotransporter 2 inhibitors in pediatric CKD

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Sodium-glucose cotransporter 2 inhibitors (SGLT2is) were originally developed as glucose-lowering agents. These medications function by inhibiting glucose and sodium reabsorption in the S1 segment of the proximal tubule. Early clinical trials in adults with type 2 diabetes mellitus (T2DM) suggested a significant improvement in kidney and cardiovascular outcomes with SGLT2i therapy. Since then, SGLT2is have become a mainstay treatment for adult patients with CKD. A growing body of research has explored deploying these medications in new clinical contexts and investigated the mechanisms underlying their physiologic effects. However, patients under the age of 18 years have been largely excluded from all major trials of SGLT2i. This review aims to summarize the available clinical evidence, physiology, and mechanisms relating to SGLT2is to inform discussions about their implementation in pediatrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

N/A.

Code availability

N/A.

References

  1. Braunwald E (2021) SGLT2 inhibitors: the statins of the 21st century. Eur Heart J. https://doi.org/10.1093/eurheartj/ehab765

    Article  PubMed  PubMed Central  Google Scholar 

  2. Li J, Tummalapalli SL, Mendu ML (2021) Advancing American kidney health and the role of sodium-glucose cotransporter-2 inhibitors. Clin J Am Soc Nephrol 16:1584

    Article  CAS  PubMed  Google Scholar 

  3. de Boer IH, Kahn SE (2017) SGLT2 inhibitors—sweet success for diabetic kidney disease? J Am Soc Nephrol 28:7

    Article  PubMed  Google Scholar 

  4. Schmidt DW, Argyropoulos C, Singh N (2021) Are the protective effects of SGLT2 inhibitors a “class-effect” or are there differences between agents? Kidney 360(2):881–885

    Article  Google Scholar 

  5. Donnan JR, Grandy CA, Chibrikov E, Marra CA, Aubrey-Bassler K, Johnston K, Swab M, Hache J, Curnew D, Nguyen H, Gamble J-M (2019) Comparative safety of the sodium glucose co-transporter 2 (SGLT2) inhibitors: a systematic review and meta-analysis. BMJ Open 9:e022577–e022577

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bakris GL, Fonseca VA, Sharma K, Wright EM (2009) Renal sodium–glucose transport: role in diabetes mellitus and potential clinical implications. Kidney Int 75:1272–1277

    Article  CAS  PubMed  Google Scholar 

  7. Skorecki K, Chertow GM, Marsden PA, Taal MW, Yu ASL (2016) Brenner & Rector’s the Kidney. Elsevier, Philadelphia, PA

    Google Scholar 

  8. Rieg T, Vallon V (2018) Development of SGLT1 and SGLT2 inhibitors. Diabetologia 61:2079–2086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wright EM, Loo DDF, Hirayama BA, Turk E (2004) Surprising versatility of Na+-glucose cotransporters: SLC5. Physiol 19:370–376

    Article  CAS  Google Scholar 

  10. Wright EM, Loo DDF, Hirayama BA (2011) Biology of human sodium glucose transporters. Phys Rev 91:733–794

    CAS  Google Scholar 

  11. Santer R, Calado J (2010) Familial renal glucosuria and SGLT2: from a Mendelian trait to a therapeutic target. Clin J Am Soc Nephrol 5:133–141

    Article  CAS  PubMed  Google Scholar 

  12. Chao EC, Henry RR (2010) SGLT2 inhibition — a novel strategy for diabetes treatment. Nat Rev Drug Discov 9:551–559

    Article  CAS  PubMed  Google Scholar 

  13. Meng W, Ellsworth BA, Nirschl AA, McCann PJ, Patel M, Girotra RN, Wu G, Sher PM, Morrison EP, Biller SA, Zahler R, Deshpande PP, Pullockaran A, Hagan DL, Morgan N, Taylor JR, Obermeier MT, Humphreys WG, Khanna A, Discenza L, Robertson JG, Wang A, Han S, Wetterau JR, Janovitz EB, Flint OP, Whaley JM, Washburn WN (2008) Discovery of dapagliflozin: a potent, selective renal sodium-dependent glucose cotransporter 2 (SGLT2) inhibitor for the treatment of type 2 diabetes. J Med Chem 51:1145–1149

    Article  CAS  PubMed  Google Scholar 

  14. Laffel LMB, Tamborlane WV, Yver A, Simons G, Wu J, Nock V, Hobson D, Hughan KS, Kaspers S, Marquard J (2018) Pharmacokinetic and pharmacodynamic profile of the sodium-glucose co-transporter-2 inhibitor empagliflozin in young people with type 2 diabetes: a randomized trial. Diabet Med 35:1096–1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vivian E (2015) Sodium-glucose cotransporter 2 inhibitors in the treatment of type 2 diabetes mellitus. Diabetes Educ 41:5S-18S

    Article  PubMed  Google Scholar 

  16. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, Mattheus M, Devins T, Johansen OE, Woerle HJ, Broedl UC, Inzucchi SE (2015) Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 373:2117–2128

    Article  CAS  PubMed  Google Scholar 

  17. Wanner C, Inzucchi SE, Lachin JM, Fitchett D, von Eynatten M, Mattheus M, Johansen OE, Woerle HJ, Broedl UC, Zinman B (2016) Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med 375:323–334

    Article  CAS  PubMed  Google Scholar 

  18. Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, Shaw W, Law G, Desai M, Matthews DR (2017) Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 377:644–657

    Article  CAS  PubMed  Google Scholar 

  19. Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, Edwards R, Agarwal R, Bakris G, Bull S, Cannon CP, Capuano G, Chu P-L, de Zeeuw D, Greene T, Levin A, Pollock C, Wheeler DC, Yavin Y, Zhang H, Zinman B, Meininger G, Brenner BM, Mahaffey KW (2019) Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med 380:2295–2306

    Article  CAS  PubMed  Google Scholar 

  20. Neal B, Perkovic V, Mahaffey KW, Fulcher G, Erondu N, Desai M, Shaw W, Law G, Walton MK, Rosenthal N, de Zeeuw D, Matthews DR, CANVASProgram collaborative group, (2017) Optimizing the analysis strategy for the CANVAS Program: a prespecified plan for the integrated analyses of the CANVAS and CANVAS-R trials. Diabetes Obes Metab 19:926–935

    Article  PubMed  PubMed Central  Google Scholar 

  21. Heerspink HJL, Stefánsson BV, Correa-Rotter R, Chertow GM, Greene T, Hou F-F, Mann JFE, McMurray JJV, Lindberg M, Rossing P, Sjöström CD, Toto RD, Langkilde A-M, Wheeler DC (2020) Dapagliflozin in patients with chronic kidney disease. N Engl J Med 383:1436–1446

    Article  CAS  PubMed  Google Scholar 

  22. Wheeler DC, Toto RD, Stefansson BV, Jongs N, Chertow GM, Greene T, Hou FF, McMurray JJV, Pecoits-Filho R, Correa-Rotter R, Rossing P, Sjöström CD, Umanath K, Langkilde AM, Heerspink HJL (2021) A pre-specified analysis of the DAPA-CKD trial demonstrates the effects of dapagliflozin on major adverse kidney events in patients with IgA nephropathy. Kidney Int 100:215–224

    Article  CAS  PubMed  Google Scholar 

  23. Bansal N, Katz R, Robinson-Cohen C, Odden MC, Dalrymple L, Shlipak MG, Sarnak MJ, Siscovick DS, Zelnick L, Psaty BM, Kestenbaum B, Correa A, Afkarian M, Young B, de Boer IH (2017) Absolute rates of heart failure, coronary heart disease, and stroke in chronic kidney disease: an analysis of 3 community-based cohort studies. JAMA Cardio 2:314–318

    Article  Google Scholar 

  24. Kula AJ, Prince DK, Flynn JT, Bansal N (2021) BP in young adults with CKD and associations with cardiovascular events and decline in kidney function. J Am Soc Nephrol 32:1200

    Article  PubMed  PubMed Central  Google Scholar 

  25. Agabiti-Rosei E, Muiesan ML, Salvetti M (2006) Evaluation of subclinical target organ damage for risk assessment and treatment in the hypertensive patients: left ventricular hypertrophy. J Am Soc Nephrol 17:S104–S108

    Article  PubMed  Google Scholar 

  26. Mitsnefes MM (2012) Cardiovascular disease in children with chronic kidney disease. J Am Soc Nephrol 23:578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. McMurray JJV, Wheeler DC, Stefánsson BV, Jongs N, Postmus D, Correa-Rotter R, Chertow GM, Greene T, Held C, Hou F-F, Mann JFE, Rossing P, Sjöström CD, Toto RD, Langkilde AM, Heerspink HJL, DAPA-CKD Trial Committees and Investigators (2021) Effect of dapagliflozin on clinical outcomes in patients with chronic kidney disease, with and without cardiovascular disease. Circulation 143:438–448

    Article  CAS  PubMed  Google Scholar 

  28. Vardeny O (2020) The sweet spot: heart failure prevention with SGLT2 inhibitors. Am J Med 133:182–185

    Article  CAS  PubMed  Google Scholar 

  29. Tuegel C, Bansal N (2017) Heart failure in patients with kidney disease. Heart 103:1848–1853

    Article  CAS  PubMed  Google Scholar 

  30. Schefold JC, Filippatos G, Hasenfuss G, Anker SD, von Haehling S (2016) Heart failure and kidney dysfunction: epidemiology, mechanisms and management. Nat Rev Nephrol 12:610–623

    Article  CAS  PubMed  Google Scholar 

  31. Verma S, Mazer CD, Yan AT, Mason T, Garg V, Teoh H, Zuo F, Quan A, Farkouh ME, Fitchett DH, Goodman SG, Goldenberg RM, Al-Omran M, Gilbert RE, Bhatt DL, Leiter LA, Jüni P, Zinman B, Connelly KA (2019) Effect of empagliflozin on left ventricular mass in patients with type 2 diabetes mellitus and coronary artery disease. The EMPA-HEART CardioLink-6 Randomized Clinical Trial. Circulation 140:1693–1702

    Article  PubMed  Google Scholar 

  32. Anker SD, Butler J, Filippatos G, Ferreira JP, Bocchi E, Böhm M, Brunner-La Rocca HP, Choi D-J, Chopra V, Chuquiure-Valenzuela E, Giannetti N, Gomez-Mesa JE, Janssens S, Januzzi JL, Gonzalez-Juanatey JR, Merkely B, Nicholls SJ, Perrone SV, Piña IL, Ponikowski P, Senni M, Sim D, Spinar J, Squire I, Taddei S, Tsutsui H, Verma S, Vinereanu D, Zhang J, Carson P, Lam CSP, Marx N, Zeller C, Sattar N, Jamal W, Schnaidt S, Schnee JM, Brueckmann M, Pocock SJ, Zannad F, Packer M (2021) Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med 385:1451–1461

    Article  CAS  PubMed  Google Scholar 

  33. Lan NSR, Fegan PG, Yeap BB, Dwivedi G (2019) The effects of sodium-glucose cotransporter 2 inhibitors on left ventricular function: current evidence and future directions. ESC Heart Fail 6:927–935

    Article  PubMed  PubMed Central  Google Scholar 

  34. Salim HM, Fukuda D, Yagi S, Soeki T, Shimabukuro M, Sata M (2016) Glycemic control with ipragliflozin, a novel selective SGLT2 inhibitor, ameliorated endothelial dysfunction in streptozotocin-induced diabetic mouse. Front Cardiovasc Med 3:43

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Wilding J (2019) SGLT2 inhibitors and urinary tract infections. Nat Rev Endocrinol 15:687–688

    Article  CAS  PubMed  Google Scholar 

  36. Dave CV, Schneeweiss S, Kim D, Fralick M, Tong A, Patorno E (2019) Sodium–glucose cotransporter-2 inhibitors and the risk for severe urinary tract infections. Ann Intern Med 171:248–256

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bersoff-Matcha SJ, Chamberlain C, Cao C, Kortepeter C, Chong WH (2019) Fournier gangrene associated with sodium–glucose cotransporter-2 inhibitors. Ann Intern Med 170:764–769

    Article  PubMed  Google Scholar 

  38. Fadini GP, Sarangdhar M, De Ponti F, Avogaro A, Raschi E (2019) Pharmacovigilance assessment of the association between Fournier’s gangrene and other severe genital adverse events with SGLT-2 inhibitors. BMJ Open Diabetes Res Care 7:e000725

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wang T, Patel SM, Hickman A, Liu X, Jones PL, Gantz I, Koro CE (2020) SGLT2 inhibitors and the risk of hospitalization for Fournier’s gangrene: a nested case–control study. Diabetes Ther 11:711–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Qiu H, Novikov A, Vallon V (2017) Ketosis and diabetic ketoacidosis in response to SGLT2 inhibitors: basic mechanisms and therapeutic perspectives. Diabetes Metab Res Rev 33:e2886

    Article  Google Scholar 

  41. Peters AL, Henry RR, Thakkar P, Tong C, Alba M (2016) Diabetic ketoacidosis with canagliflozin, a sodium–glucose cotransporter 2 inhibitor, in patients with type 1 diabetes. Diabetes Care 39:532

    Article  CAS  PubMed  Google Scholar 

  42. Palmer BF, Clegg DJ (2021) Euglycemic ketoacidosis as a complication of SGLT2 inhibitor therapy. Clin J Am Soc Nephrol 16:1284–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Calcaterra V, Verduci E, Pascuzzi MC, Magenes VC, Fiore G, Di Profio E, Tenuta E, Bosetti A, Todisco CF, D’Auria E, Zuccotti G (2021) Metabolic derangement in pediatric patient with obesity: the role of ketogenic diet as therapeutic tool. Nutrients 13:2805

    Article  PubMed  PubMed Central  Google Scholar 

  44. Watts NB, Bilezikian JP, Usiskin K, Edwards R, Desai M, Law G, Meininger G (2016) Effects of canagliflozin on fracture risk in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 101:157–166

    Article  CAS  PubMed  Google Scholar 

  45. Ljunggren Ö, Bolinder J, Johansson L, Wilding J, Langkilde AM, Sjöström CD, Sugg J, Parikh S (2012) Dapagliflozin has no effect on markers of bone formation and resorption or bone mineral density in patients with inadequately controlled type 2 diabetes mellitus on metformin. Diabetes Obes Metab 14:990–999

    Article  CAS  PubMed  Google Scholar 

  46. Bilezikian JP, Watts NB, Usiskin K, Polidori D, Fung A, Sullivan D, Rosenthal N (2016) Evaluation of bone mineral density and bone biomarkers in patients with type 2 diabetes treated with canagliflozin. J Clin Endocrinol Metab 101:44–51

    Article  CAS  PubMed  Google Scholar 

  47. Blau JE, Bauman V, Conway EM, Piaggi P, Walter MF, Wright EC, Bernstein S, Courville AB, Collins MT, Rother KI, Taylor SI (2018) Canagliflozin triggers the FGF23/1,25-dihydroxyvitamin D/PTH axis in healthy volunteers in a randomized crossover study. JCI Insight 3:e99123

    Article  PubMed Central  Google Scholar 

  48. de Jong MA, Petrykiv SI, Laverman GD, van Herwaarden AE, de Zeeuw D, Bakker SJL, Heerspink HJL, de Borst MH (2019) Effects of dapagliflozin on circulating markers of phosphate homeostasis. Clin J Am Soc Nephrol 14:66

    Article  PubMed  Google Scholar 

  49. Heerspink HJL, Cherney DZI (2021) Clinical implications of an acute dip in eGFR after SGLT2 inhibitor initiation. Clin J Am Soc Nephrol 16:1278

    Article  PubMed  PubMed Central  Google Scholar 

  50. Bjornstad P, Laffel L, Tamborlane WV, Simons G, Hantel S, von Eynatten M, George J, Marquard J, Cherney DZI (2018) Acute effect of empagliflozin on fractional excretion of sodium and eGFR in youth with type 2 diabetes. Diabetes Care 41:e129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cherney DZI, Perkins BA, Soleymanlou N, Maione M, Lai V, Lee A, Fagan NM, Woerle HJ, Johansen OE, Broedl UC, von Eynatten M (2014) Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation 129:587–597

    Article  CAS  PubMed  Google Scholar 

  52. Zhang J, Wei J, Jiang S, Xu L, Wang L, Cheng F, Buggs J, Koepsell H, Vallon V, Liu R (2019) Macula densa SGLT1-NOS1-tubuloglomerular feedback pathway, a new mechanism for glomerular hyperfiltration during hyperglycemia. J Am Soc Nephrol 30:578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Faucon A-L, Flamant M, Metzger M, Boffa J-J, Haymann J-P, Houillier P, Thervet E, Vrtovsnik F, Stengel B, Geri G, Vidal-Petiot E, Daugas E, Tabibzadeh N, Karras A, Roueff S, Courbebaisse M, Prot-Bertoye C, Bertocchio J-P, Maruani G, Ronco P, Fessi H, Rondeau E, Livrozet M, Letavernier E, Urena-Torres P (2019) Extracellular fluid volume is associated with incident end-stage kidney disease and mortality in patients with chronic kidney disease. Kidney Int 96:1020–1029

    Article  CAS  PubMed  Google Scholar 

  54. Heerspink HJL, Kosiborod M, Inzucchi SE, Cherney DZI (2018) Renoprotective effects of sodium-glucose cotransporter-2 inhibitors. Kidney Int 94:26–39

    Article  CAS  PubMed  Google Scholar 

  55. Griffin M, Rao Veena S, Ivey-Miranda J, Fleming J, Mahoney D, Maulion C, Suda N, Siwakoti K, Ahmad T, Jacoby D, Riello R, Bellumkonda L, Cox Z, Collins S, Jeon S, Turner Jeffrey M, Wilson FP, Butler J, Inzucchi Silvio E, Testani Jeffrey M (2020) Empagliflozin in heart failure. Circulation 142:1028–1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schmieder R, Ott C, Linz P, Jumar A, Friedrich S, Titze J, Hammon M, Uder M, Kistner I (2016) OS 12–03 SGLT-2-inhibition with dapagliflozin reduces tissue sodium content. J Hypertens 34:e76

    Article  Google Scholar 

  57. Baker WL, Buckley LF, Kelly MS, Bucheit JD, Parod ED, Brown R, Carbone S, Abbate A, Dixon DL (2017) Effects of sodium-glucose cotransporter 2 inhibitors on 24-hour ambulatory blood pressure: a systematic review and meta-Analysis. J Am Heart Assoc 6:e005686

    Article  PubMed  PubMed Central  Google Scholar 

  58. Cai T, Ke Q, Fang Y, Wen P, Chen H, Yuan Q, Luo J, Zhang Y, Sun Q, Lv Y, Zen K, Jiang L, Zhou Y, Yang J (2020) Sodium–glucose cotransporter 2 inhibition suppresses HIF-1α-mediated metabolic switch from lipid oxidation to glycolysis in kidney tubule cells of diabetic mice. Cell Death Dis 11:390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Packer M (2020) Cardioprotective effects of sirtuin-1 and its downstream effectors. Circ Heart Fail 13:e007197

    Article  CAS  PubMed  Google Scholar 

  60. Packer M (2020) SGLT2 inhibitors produce cardiorenal benefits by promoting adaptive cellular reprogramming to induce a state of fasting mimicry: a paradigm shift in understanding their mechanism of action. Diabetes Care 43:508

    Article  CAS  PubMed  Google Scholar 

  61. Cowie MR, Fisher M (2020) SGLT2 inhibitors: mechanisms of cardiovascular benefit beyond glycaemic control. Nat Rev Cardio 17:761–772

    Article  CAS  Google Scholar 

  62. Solini A, Seghieri M, Giannini L, Biancalana E, Parolini F, Rossi C, Dardano A, Taddei S, Ghiadoni L, Bruno RM (2019) The effects of dapagliflozin on systemic and renal vascular function display an epigenetic signature. J Clin Endocrinol Metab 104:4253–4263

    Article  PubMed  Google Scholar 

  63. Fathallah-Shaykh SA, Cramer MT (2014) Uric acid and the kidney. Pediatr Nephrol 29:999–1008

    Article  PubMed  Google Scholar 

  64. Oluwo O, Scialla JJ (2021) Uric acid and CKD progression matures with lessons for CKD risk factor discovery. Clin J Am Soc Nephrol 16:476

    Article  CAS  PubMed  Google Scholar 

  65. Bailey CJ (2019) Uric acid and the cardio-renal effects of SGLT2 inhibitors. Diabetes Obes Metab 21:1291–1298

    Article  CAS  PubMed  Google Scholar 

  66. Chino Y, Samukawa Y, Sakai S, Nakai Y, Yamaguchi J-i, Nakanishi T, Tamai I (2014) SGLT2 inhibitor lowers serum uric acid through alteration of uric acid transport activity in renal tubule by increased glycosuria. Biopharm Drug Dispos 35:391–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bobulescu IA, Moe OW (2012) Renal transport of uric acid: evolving concepts and uncertainties. Adv Chronic Kidney Dis 19:358–371

    Article  PubMed  PubMed Central  Google Scholar 

  68. Meraz-Muñoz AY, Weinstein J, Wald R (2021) eGFR decline after SGLT2 inhibitor initiation: the tortoise and the hare reimagined. Kidney 360(2):1042

    Article  Google Scholar 

  69. Patel N, Hindi J, Farouk SS (2021) Sodium-glucose cotransporter 2 inhibitors and kidney transplantation: what are we waiting for? Kidney 360(2):1174

    Article  Google Scholar 

  70. Blydt-Hansen TD, Pierce CB, Cai Y, Samsonov D, Massengill S, Moxey-Mims M, Warady BA, Furth SL (2014) Medication treatment complexity and adherence in children with CKD. Clin J Am Soc Nephrol 9:247

    Article  PubMed  Google Scholar 

  71. McMurray JJV, Solomon SD, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA, Ponikowski P, Sabatine MS, Anand IS, Bělohlávek J, Böhm M, Chiang C-E, Chopra VK, de Boer RA, Desai AS, Diez M, Drozdz J, Dukát A, Ge J, Howlett JG, Katova T, Kitakaze M, Ljungman CEA, Merkely B, Nicolau JC, O’Meara E, Petrie MC, Vinh PN, Schou M, Tereshchenko S, Verma S, Held C, DeMets DL, Docherty KF, Jhund PS, Bengtsson O, Sjöstrand M, Langkilde A-M (2019) Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med 381:1995–2008

    Article  CAS  PubMed  Google Scholar 

  72. Docherty KF, Jhund PS, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA, Ponikowski P, DeMets DL, Sabatine MS, Bengtsson O, Sjöstrand M, Langkilde AM, Desai AS, Diez M, Howlett JG, Katova T, Ljungman CEA, O’Meara E, Petrie MC, Schou M, Verma S, Vinh PN, Solomon SD, McMurray JJV, on behalf of the D-HFIaC (2020) Effects of dapagliflozin in DAPA-HF according to background heart failure therapy. Eur Heart J 41:2379–2392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Barratt J, Floege J (2021) SGLT-2 inhibition in IgA nephropathy: the new standard of care? Kidney Int 100:24–26

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

In part, this work was supported by Seattle Children’s Hospital/University of Washington NIH T32DK997662.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander J. Kula.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kula, A.J. Considerations and possibilities for sodium-glucose cotransporter 2 inhibitors in pediatric CKD. Pediatr Nephrol 37, 2267–2276 (2022). https://doi.org/10.1007/s00467-022-05456-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-022-05456-x

Keywords

Navigation