Skip to main content

Advertisement

Log in

How immunosuppressive drugs may directly target podocytes in glomerular diseases

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Podocytes are the direct target of immunologic injury in many immune-mediated glomerular diseases, leading to proteinuria and subsequent kidney failure. Immunosuppressive agents such as steroids, calcineurin inhibitors, and rituximab are the commonly used treatment strategies in this context for their immunotherapeutic or anti-inflammatory properties. However, in recent years, studies have demonstrated that immunosuppressive agents can have a direct effect on podocytes, introducing the concept of the non-immunologic mechanism of kidney protection by immunomodulators. In this review, we focus on the mechanisms by which these agents may directly target the podocyte independent of their systemic effects and examine their clinical significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Garg P (2018) A review of podocyte biology. Am J Nephrol 47(Suppl1):3–13. https://doi.org/10.1159/000481633

    Article  CAS  PubMed  Google Scholar 

  2. Abrahamson DR (2012) Role of the podocyte (and glomerular endothelium) in building the GBM. Semin Nephrol 32:342–349. https://doi.org/10.1016/j.semnephrol.2012.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Eremina V, Jefferson JA, Kowalewska J, Hochster H, Haas M, Weisstuch J, Richardson C, Kopp JB, Kabir MG, Backx PH, Gerber HP, Ferrara N, Barisoni L, Alpers CE, Quaggin SE (2008) VEGF inhibition and renal thrombotic microangiopathy. N Engl J Med 358:1129–1136. https://doi.org/10.1056/NEJMoa0707330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Neal CR, Crook H, Bell E, Harper SJ, Bates DO (2005) Three-dimensional reconstruction of glomeruli by electron microscopy reveals a distinct restrictive urinary subpodocyte space. J Am Soc Nephrol 16:1223–1235. https://doi.org/10.1681/ASN.2004100822

    Article  PubMed  Google Scholar 

  5. Grahammer F (2017) New structural insights into podocyte biology. Cell Tissue Res 369:5–10. https://doi.org/10.1007/s00441-017-2590-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yu SM, Nissaisorakarn P, Husain I, Jim B (2018) Proteinuric kidney diseases: a podocyte's slit diaphragm and cytoskeleton approach. Front Med 5:221. https://doi.org/10.3389/fmed.2018.00221

    Article  Google Scholar 

  7. Kawachi H, Fukusumi Y (2020) New insight into podocyte slit diaphragm, a therapeutic target of proteinuria. Clin Exp Nephrol 24:193–204. https://doi.org/10.1007/s10157-020-01854-3

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kriz W, Shirato I, Nagata M, LeHir M, Lemley KV (2013) The podocyte's response to stress: the enigma of foot process effacement. Am J Physiol Ren Physiol 304:F333–F347. https://doi.org/10.1152/ajprenal.00478.2012

    Article  CAS  Google Scholar 

  9. Kriz W, Lemley KV (2017) Potential relevance of shear stress for slit diaphragm and podocyte function. Kidney Int 91:1283–1286. https://doi.org/10.1016/j.kint.2017.02.032

    Article  PubMed  Google Scholar 

  10. Nagata M (2016) Podocyte injury and its consequences. Kidney Int 89:1221–1230. https://doi.org/10.1016/j.kint.2016.01.012

    Article  CAS  PubMed  Google Scholar 

  11. Yoo TH, Fornoni A (2015) Nonimmunologic targets of immunosuppressive agents in podocytes. Kidney Res Clin Pract 34:69–75. https://doi.org/10.1016/j.krcp.2015.03.003

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cheng X, Zhao X, Khurana S, Bruggeman LA, Kao HY (2013) Microarray analyses of glucocorticoid and vitamin D3 target genes in differentiating cultured human podocytes. PLoS One 8:e60213. https://doi.org/10.1371/journal.pone.0060213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jiang L, Hindmarch CC, Rogers M, Campbell C, Waterfall C, Coghill J, Mathieson PW, Welsh GI (2016) RNA sequencing analysis of human podocytes reveals glucocorticoid regulated gene networks targeting non-immune pathways. Sci Rep 6:35671. https://doi.org/10.1038/srep35671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yamauchi K, Takano Y, Kasai A, Hayakawa K, Hiramatsu N, Enomoto N, Yao J, Kitamura M (2006) Screening and identification of substances that regulate nephrin gene expression using engineered reporter podocytes. Kidney Int 70:892–900. https://doi.org/10.1038/sj.ki.5001625

    Article  CAS  PubMed  Google Scholar 

  15. Fujii Y, Khoshnoodi J, Takenaka H, Hosoyamada M, Nakajo A, Bessho F, Kudo A, Takahashi S, Arimura Y, Yamada A, Nagasawa T, Ruotsalainen V, Tryggvason K, Lee AS, Yan K (2006) The effect of dexamethasone on defective nephrin transport caused by ER stress: a potential mechanism for the therapeutic action of glucocorticoids in the acquired glomerular diseases. Kidney Int 69:1350–1359. https://doi.org/10.1038/sj.ki.5000317

    Article  CAS  PubMed  Google Scholar 

  16. Ohashi T, Uchida K, Uchida S, Sasaki S, Nitta K (2011) Dexamethasone increases the phosphorylation of nephrin in cultured podocytes. Clin Exp Nephrol 15:688–693. https://doi.org/10.1007/s10157-011-0479-0

    Article  CAS  PubMed  Google Scholar 

  17. Uchida K, Suzuki K, Iwamoto M, Kawachi H, Ohno M, Horita S, Nitta K (2008) Decreased tyrosine phosphorylation of nephrin in rat and human nephrosis. Kidney Int 73:926–932. https://doi.org/10.1038/ki.2008.19

    Article  CAS  PubMed  Google Scholar 

  18. Zha D, Chen C, Liang W, Chen X, Ma T, Yang H, Hv G, Ding G (2013) Nephrin phosphorylation regulates podocyte adhesion through the PINCH-1-ILK-α-parvin complex. BMB Rep 46:230–235. https://doi.org/10.5483/bmbrep.2013.46.4.270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xing CY, Saleem MA, Coward RJ, Ni L, Witherden IR, Mathieson PW (2006) Direct effects of dexamethasone on human podocytes. Kidney Int 70:1038–1045. https://doi.org/10.1038/sj.ki.5001655

    Article  CAS  PubMed  Google Scholar 

  20. Yu S, Yu L (2012) Dexamethasone resisted podocyte injury via stabilizing TRPC6 expression and distribution. Evid Based Complement Alternat Med 2012:652059. https://doi.org/10.1155/2012/652059

    Article  PubMed  PubMed Central  Google Scholar 

  21. Reiser J, von Gersdorff G, Loos M, Oh J, Asanuma K, Giardino L, Rastaldi MP, Calvaresi N, Watanabe H, Schwarz K, Faul C, Kretzler M, Davidson A, Sugimoto H, Kalluri R, Sharpe AH, Kreidberg JA, Mundel P (2004) Induction of B7-1 in podocytes is associated with nephrotic syndrome. J Clin Invest 113:1390–1397. https://doi.org/10.1172/JCI20402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Asada M, Rauch A, Shimizu H, Maruyama H, Miyaki S, Shibamori M, Kawasome H, Ishiyama H, Tuckermann J, Asahara H (2011) DNA binding-dependent glucocorticoid receptor activity promotes adipogenesis via Krüppel-like factor 15 gene expression. Lab Investig 91:203–215. https://doi.org/10.1038/labinvest.2010.170

    Article  CAS  PubMed  Google Scholar 

  23. Mallipattu SK, Guo Y, Revelo MP, Roa-Peña L, Miller T, Ling J, Shankland SJ, Bialkowska AB, Ly V, Estrada C, Jain MK, Lu Y, Ma'ayan A, Mehrotra A, Yacoub R, Nord EP, Woroniecki RP, Yang VW, He JC (2017) Krüppel-Like factor 15 mediates glucocorticoid-induced restoration of podocyte differentiation markers. J Am Soc Nephrol 28:166–184. https://doi.org/10.1681/ASN.2015060672

    Article  CAS  PubMed  Google Scholar 

  24. Han SS, Yu MY, Yoo KD, Lee JP, Kim DK, Kim YS, Yang SH (2018) Loss of KLF15 accelerates chronic podocyte injury. Int J Mol Med 42:1593–1602. https://doi.org/10.3892/ijmm.2018.3726

    Article  CAS  PubMed  Google Scholar 

  25. Mallipattu SK, Liu R, Zheng F, Narla G, Ma'ayan A, Dikman S, Jain MK, Saleem M, D'Agati V, Klotman P, Chuang PY, He JC (2012) Kruppel-like factor 15 (KLF15) is a key regulator of podocyte differentiation. J Biol Chem 287:19122–19135. https://doi.org/10.1074/jbc.M112.345983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhao X, Khurana S, Charkraborty S, Tian Y, Sedor JR, Bruggman LA, Kao HY (2017) α Actinin 4 (ACTN4) regulates glucocorticoid receptor-mediated transactivation and transrepression in podocytes. J Biol Chem 292:1637–1647. https://doi.org/10.1074/jbc.M116.755546

    Article  CAS  PubMed  Google Scholar 

  27. McCaffrey JC, Webb NJ, Poolman TM, Fresquet M, Moxey C, Zeef L, Donaldson IJ, Ray DW, Lennon R (2017) Glucocorticoid therapy regulates podocyte motility by inhibition of Rac1. Sci Rep 7:6725. https://doi.org/10.1038/s41598-017-06810-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ransom RF, Lam NG, Hallett MA, Atkinson SJ, Smoyer WE (2005) Glucocorticoids protect and enhance recovery of cultured murine podocytes via actin filament stabilization. Kidney Int 68:2473–2483. https://doi.org/10.1111/j.1523-1755.2005.00723.x

    Article  CAS  PubMed  Google Scholar 

  29. Wu J, Zheng C, Fan Y, Zeng C, Chen Z, Qin W, Zhang C, Zhang W, Wang X, Zhu X, Zhang M, Zen K, Liu Z (2014) Downregulation of microRNA-30 facilitates podocyte injury and is prevented by glucocorticoids. J Am Soc Nephrol 25:92–104. https://doi.org/10.1681/ASN.2012111101

    Article  CAS  PubMed  Google Scholar 

  30. Wada T, Pippin JW, Marshall CB, Griffin SV, Shankland SJ (2005) Dexamethasone prevents podocyte apoptosis induced by puromycin aminonucleoside: role of p53 and Bcl-2-related family proteins. J Am Soc Nephrol 16:2615–2625. https://doi.org/10.1681/ASN.2005020142

    Article  CAS  PubMed  Google Scholar 

  31. Wada T, Pippin JW, Nangaku M, Shankland SJ (2008) Dexamethasone's prosurvival benefits in podocytes require extracellular signal-regulated kinase phosphorylation. Nephron Exp Nephrol 109:e8–e19. https://doi.org/10.1159/000131892

    Article  CAS  PubMed  Google Scholar 

  32. Faul C, Donnelly M, Merscher-Gomez S, Chang YH, Franz S, Delfgaauw J, Chang JM, Choi HY, Campbell KN, Kim K, Reiser J, Mundel P (2008) The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. Nat Med 14:931–938. https://doi.org/10.1038/nm.1857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schlöndorff J, Del Camino D, Carrasquillo R, Lacey V, Pollak MR (2009) TRPC6 mutations associated with focal segmental glomerulosclerosis cause constitutive activation of NFAT-dependent transcription. Am J Physiol Cell Physiol 296:C558–C569. https://doi.org/10.1152/ajpcell.00077.2008

  34. Peng L, Ma J, Cui R, Chen X, Wei SY, Wei QJ, Li B (2014) The calcineurin inhibitor tacrolimus reduces proteinuria in membranous nephropathy accompanied by a decrease in angiopoietin-like-4. PLoS One 9:e106164. https://doi.org/10.1371/journal.pone.0106164

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wang L, Chang JH, Paik SY, Tang Y, Eisner W, Spurney RF (2011) Calcineurin (CN) activation promotes apoptosis of glomerular podocytes both in vitro and in vivo. Mol Endocrinol 25:1376–1386. https://doi.org/10.1210/me.2011-0029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li R, Zhang L, Shi W, Zhang B, Liang X, Liu S, Wang W (2013) NFAT2 mediates high glucose-induced glomerular podocyte apoptosis through increased Bax expression. Exp Cell Res 319:992–1000. https://doi.org/10.1016/j.yexcr.2013.01.007

    Article  CAS  PubMed  Google Scholar 

  37. Fornoni A, Sageshima J, Wei C, Merscher-Gomez S, Aguillon-Prada R, Jauregui AN, Li J, Mattiazzi A, Ciancio G, Chen L, Zilleruelo G, Abitbol C, Chandar J, Seeherunvong W, Ricordi C, Ikehata M, Rastaldi MP, Reiser J, Burke GW 3rd (2011) Rituximab targets podocytes in recurrent focal segmental glomerulosclerosis. Sci Transl Med 3:85ra46. https://doi.org/10.1126/scitranslmed.3002231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yu CC, Fornoni A, Weins A, Hakroush S, Maiguel D, Sageshima J, Chen L, Ciancio G, Faridi MH, Behr D, Campbell KN, Chang JM, Chen HC, Oh J, Faul C, Arnaout MA, Fiorina P, Gupta V, Greka A, Burke GW, 3rd … Mundel P (2013) Abatacept in B7-1-positive proteinuric kidney disease. N Engl J Med 369:2416–2423. https://doi.org/10.1056/NEJMoa1304572

  39. Nakajo A, Khoshnoodi J, Takenaka H, Hagiwara E, Watanabe T, Kawakami H, Kurayama R, Sekine Y, Bessho F, Takahashi S, Swiatecka-Urban A, Tryggvason K, Yan K (2007) Mizoribine corrects defective nephrin biogenesis by restoring intracellular energy balance. J Am Soc Nephrol 18:2554–2564. https://doi.org/10.1681/ASN.2006070732

    Article  CAS  PubMed  Google Scholar 

  40. Lee HW, Khan SQ, Faridi MH, Wei C, Tardi NJ, Altintas MM, Elshabrawy HA, Mangos S, Quick KL, Sever S, Reiser J, Gupta V (2015) A podocyte-based automated screening assay identifies protective small molecules. J Am Soc Nephrol 26:2741–2752. https://doi.org/10.1681/ASN.2014090859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wei C, Möller CC, Altintas MM, Li J, Schwarz K, Zacchigna S, Xie L, Henger A, Schmid H, Rastaldi MP, Cowan P, Kretzler M, Parrilla R, Bendayan M, Gupta V, Nikolic B, Kalluri R, Carmeliet P, Mundel P, Reiser J (2008) Modification of kidney barrier function by the urokinase receptor. Nat Med 14:55–63. https://doi.org/10.1038/nm1696

    Article  CAS  PubMed  Google Scholar 

  42. Cheng CC, Lee YF, Lan JL, Wu MJ, Hsieh TY, Lin NN, Wang JM, Chiu YT (2013) Mycophenolate mofetil alleviates lupus nephritis through urokinase receptor signaling in a mice model. Lupus 22:554–561. https://doi.org/10.1177/0961203313480398

    Article  CAS  PubMed  Google Scholar 

  43. Gong R (2011) The renaissance of corticotropin therapy in proteinuric nephropathies. Nat Rev Nephrol 8:122–128. https://doi.org/10.1038/nrneph.2011.190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gong R (2014) Leveraging melanocortin pathways to treat glomerular diseases. Adv Chronic Kidney Dis 21:134–151. https://doi.org/10.1053/j.ackd.2013.09.004

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ponticelli C, Locatelli F (2018) Glucocorticoids in the treatment of glomerular diseases: pitfalls and pearls. Clin J Am Soc Nephrol 13:815–822. https://doi.org/10.2215/CJN.12991117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Panettieri RA, Schaafsma D, Amrani Y, Koziol-White C, Ostrom R, Tliba O (2019) Non-genomic effects of glucocorticoids: an updated view. Trends Pharmacol Sci 40:38–49. https://doi.org/10.1016/j.tips.2018.11.002

    Article  CAS  PubMed  Google Scholar 

  47. Hosseiniyan Khatibi SM, Ardalan M, Abediazar S, Zununi Vahed S (2020) The impact of steroids on the injured podocytes in nephrotic syndrome. J Steroid Biochem Mol Biol 196:105490. https://doi.org/10.1016/j.jsbmb.2019.105490

    Article  CAS  PubMed  Google Scholar 

  48. Zhao X, Hwang DY, Kao HY (2018) The role of glucocorticoid receptors in podocytes and nephrotic syndrome. Nucl Receptor Res 5:101323. https://doi.org/10.11131/2018/101323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Martin CE, Jones N (2018) Nephrin signaling in the podocyte: an updated view of signal regulation at the slit diaphragm and beyond. Front Endocrinol 9:302. https://doi.org/10.3389/fendo.2018.00302

    Article  Google Scholar 

  50. Schönenberger E, Ehrich JH, Haller H, Schiffer M (2011) The podocyte as a direct target of immunosuppressive agents. Nephrol Dial Transplant 26:18–24. https://doi.org/10.1093/ndt/gfq617

    Article  CAS  PubMed  Google Scholar 

  51. Brähler S, Ising C, Hagmann H, Rasmus M, Hoehne M, Kurschat C, Kisner T, Goebel H, Shankland S, Addicks K, Thaiss F, Schermer B, Pasparakis M, Benzing T, Brinkkoetter PT (2012) Intrinsic proinflammatory signaling in podocytes contributes to podocyte damage and prolonged proteinuria. Am J Physiol Ren Physiol 303:F1473–F1485. https://doi.org/10.1152/ajprenal.00031.2012

    Article  CAS  Google Scholar 

  52. Yu M, Ren Q, Yu SY (2014) Role of nephrin phosphorylation inducted by dexamethasone and angiotensin II in podocytes. Mol Biol Rep 41:3591–3595. https://doi.org/10.1007/s11033-014-3222-6

    Article  CAS  PubMed  Google Scholar 

  53. Bohr DC, Koch M, Kritzenberger M, Fuchshofer R, Tamm ER (2011) Increased expression of olfactomedin-1 and myocilin in podocytes during puromycin aminonucleoside nephrosis. Nephrol Dial Transplant 26:83–92. https://doi.org/10.1093/ndt/gfq366

    Article  CAS  PubMed  Google Scholar 

  54. Hall G, Wang L, Spurney RF (2019) TRPC channels in proteinuric kidney diseases. Cells 9:44. https://doi.org/10.3390/cells9010044

    Article  CAS  PubMed Central  Google Scholar 

  55. Shimada M, Ishimoto T, Lee PY, Lanaspa MA, Rivard CJ, Roncal-Jimenez CA, Wymer DT, Yamabe H, Mathieson PW, Saleem MA, Garin EH, Johnson RJ (2012) Toll-like receptor 3 ligands induce CD80 expression in human podocytes via an NF-κB-dependent pathway. Nephrol Dial Transplant 27:81–89. https://doi.org/10.1093/ndt/gfr271

    Article  CAS  PubMed  Google Scholar 

  56. Huang Y, Border WA, Yu L, Zhang J, Lawrence DA, Noble NA (2008) A PAI-1 mutant, PAI-1R, slows progression of diabetic nephropathy. J Am Soc Nephrol 19:329–338. https://doi.org/10.1681/ASN.2007040510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Villa L, Boor P, Konieczny A, Kunter U, van Roeyen CR, Denecke B, Gan L, Neusser MA, Cohen CD, ERCB Consortium; Eitner F, Scholl T, Ostendorf T, Floege J (2013) Late angiotensin II receptor blockade in progressive rat mesangioproliferative glomerulonephritis: new insights into mechanisms. J Pathol 229:672–684. https://doi.org/10.1002/path.4151

    Article  CAS  PubMed  Google Scholar 

  58. Clement LC, Avila-Casado C, Macé C, Soria E, Bakker WW, Kersten S, Chugh SS (2011) Podocyte-secreted angiopoietin-like-4 mediates proteinuria in glucocorticoid-sensitive nephrotic syndrome. Nat Med 17:117–122. https://doi.org/10.1038/nm.2261

    Article  CAS  PubMed  Google Scholar 

  59. Anderberg RJ, Meek RL, Hudkins KL, Cooney SK, Alpers CE, Leboeuf RC, Tuttle KR (2015) Serum amyloid A and inflammation in diabetic kidney disease and podocytes. Lab Investig 95:697. https://doi.org/10.1038/labinvest.2015.38

    Article  PubMed  Google Scholar 

  60. Endlich N, Siegerist F, Endlich K (2017) Are podocytes motile? Pflugers Arch 469:951–957. https://doi.org/10.1007/s00424-017-2016-9

    Article  CAS  PubMed  Google Scholar 

  61. Yu H, Suleiman H, Kim AH, Miner JH, Dani A, Shaw AS, Akilesh S (2013) Rac1 activation in podocytes induces rapid foot process effacement and proteinuria. Mol Cell Biol 33:4755–4764. https://doi.org/10.1128/MCB.00730-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Guo JK, Menke AL, Gubler MC, Clarke AR, Harrison D, Hammes A, Hastie ND, Schedl A (2002) WT1 is a key regulator of podocyte function: reduced expression levels cause crescentic glomerulonephritis and mesangial sclerosis. Hum Mol Genet 11:651–659. https://doi.org/10.1093/hmg/11.6.651

    Article  CAS  PubMed  Google Scholar 

  63. Palmer RE, Kotsianti A, Cadman B, Boyd T, Gerald W, Haber DA (2001) WT1 regulates the expression of the major glomerular podocyte membrane protein Podocalyxin. Curr Biol 11:1805–1809. https://doi.org/10.1016/s0960-9822(01)00560-7

    Article  CAS  PubMed  Google Scholar 

  64. Takemoto M, He L, Norlin J, Patrakka J, Xiao Z, Petrova T, Bondjers C, Asp J, Wallgard E, Sun Y, Samuelsson T, Mostad P, Lundin S, Miura N, Sado Y, Alitalo K, Quaggin SE, Tryggvason K, Betsholtz C (2006) Large-scale identification of genes implicated in kidney glomerulus development and function. EMBO J 25:1160–1174. https://doi.org/10.1038/sj.emboj.7601014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Motojima M, Kume T, Matsusaka T, Ichikawa I (2015) Foxc1 and Foxc2 cooperate in maintaining glomerular podocytes. Foxc1 and Foxc2 cooperate in maintaining glomerular podocytes. FASEB J 29:880–888. https://doi.org/10.1096/fasebj.29.1_supplement.880.8

    Article  Google Scholar 

  66. Zhang J, Pippin JW, Krofft RD, Naito S, Liu ZH, Shankland SJ (2013) Podocyte repopulation by renal progenitor cells following glucocorticoids treatment in experimental FSGS. Am J Physiol Ren Physiol 304:F1375–F1389. https://doi.org/10.1152/ajprenal.00020.2013

    Article  CAS  Google Scholar 

  67. Aramburu J, Heitman J, Crabtree GR (2004) Calcineurin: a central controller of signalling in eukaryotes. EMBO Rep 5:343–348. https://doi.org/10.1038/sj.embor.7400133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Plank C, Kalb V, Hinkes B, Hildebrandt F, Gefeller O, Rascher W, Arbeitsgemeinschaft für Pädiatrische Nephrologie (2008) Cyclosporin A is superior to cyclophosphamide in children with steroid-resistant nephrotic syndrome-a randomized controlled multicentre trial by the Arbeitsgemeinschaft für Pädiatrische Nephrologie. Pediatr Nephrol 23:1483–1493. https://doi.org/10.1007/s00467-008-0794-1

  69. Cattran DC, Alexopoulos E, Heering P, Hoyer PF, Johnston A, Meyrier A, Ponticelli C, Saito T, Choukroun G, Nachman P, Praga M, Yoshikawa N (2007) Cyclosporin in idiopathic glomerular disease associated with the nephrotic syndrome : workshop recommendations. Kidney Int 72:1429–1447. https://doi.org/10.1038/sj.ki.5002553

    Article  CAS  PubMed  Google Scholar 

  70. Charbit M, Gubler MC, Dechaux M, Gagnadoux MF, Grünfeld JP, Niaudet P (2007) Cyclosporin therapy in patients with Alport syndrome. Pediatr Nephrol 22:57–63. https://doi.org/10.1007/s00467-006-0227-y

    Article  PubMed  Google Scholar 

  71. Bensman A, Niaudet P (2010) Non-immunologic mechanisms of calcineurin inhibitors explain its antiproteinuric effects in genetic glomerulopathies. Pediatr Nephrol 25:1197–1199. https://doi.org/10.1007/s00467-010-1469-2

    Article  PubMed  Google Scholar 

  72. Gellermann J, Stefanidis CJ, Mitsioni A, Querfeld U (2010) Successful treatment of steroid-resistant nephrotic syndrome associated with WT1 mutations. Pediatr Nephrol 25:1285–1289. https://doi.org/10.1007/s00467-010-1468-3

    Article  PubMed  Google Scholar 

  73. Malina M, Cinek O, Janda J, Seeman T (2009) Partial remission with cyclosporine A in a patient with nephrotic syndrome due to NPHS2 mutation. Pediatr Nephrol 24:2051–2053. https://doi.org/10.1007/s00467-009-1211-0

    Article  PubMed  Google Scholar 

  74. Rusnak F, Mertz P (2000) Calcineurin: form and function. Physiol Rev 80:1483–1521. https://doi.org/10.1152/physrev.2000.80.4.1483

    Article  CAS  PubMed  Google Scholar 

  75. Shibasaki F, Hallin U, Uchino H (2002) Calcineurin as a multifunctional regulator. J Biochem 131:1–15. https://doi.org/10.1093/oxfordjournals.jbchem.a003063

    Article  CAS  PubMed  Google Scholar 

  76. Wakamatsu A, Fukusumi Y, Hasegawa E, Tomita M, Watanabe T, Narita I, Kawachi H (2016) Role of calcineurin (CN) in kidney glomerular podocyte: CN inhibitor ameliorated proteinuria by inhibiting the redistribution of CN at the slit diaphragm. Phys Rep 4:e12679. https://doi.org/10.14814/phy2.12679

    Article  CAS  Google Scholar 

  77. Wang Y, Jarad G, Tripathi P, Pan M, Cunningham J, Martin DR, Liapis H, Miner JH, Chen F (2010) Activation of NFAT signaling in podocytes causes glomerulosclerosis. J Am Soc Nephrol 21:1657–1666. https://doi.org/10.1681/ASN.2009121253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Cribbs JT, Strack S (2007) Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO Rep 8:939–944. https://doi.org/10.1038/sj.embor.7401062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Townsend MJ, Monroe JG, Chan AC (2010) B-cell targeted therapies in human autoimmune diseases: an updated perspective. Immunol Rev 237:264–283. https://doi.org/10.1111/j.1600-065X.2010.00945.x

    Article  CAS  PubMed  Google Scholar 

  80. Gauckler P, Shin JI, Alberici F, Audard V, Bruchfeld A, Busch M, Cheung CK, Crnogorac M, Delbarba E, Eller K, Faguer S, Galesic K, Griffin S, Hrušková Z, Jeyabalan A, Karras A, King C, Kohli HS, Maas R, Mayer G et al (2020) Rituximab in adult minimal change disease and focal segmental glomerulosclerosis—what is known and what is still unknown? Autoimmun Rev 19:102671. https://doi.org/10.1016/j.autrev.2020.102671

    Article  CAS  PubMed  Google Scholar 

  81. Bomback AS, Fervenza FC (2018) Membranous nephropathy: approaches to treatment. Am J Nephrol 47(Suppl 1):30–42. https://doi.org/10.1159/000481635

    Article  CAS  PubMed  Google Scholar 

  82. Perosa F, Favoino E, Caragnano MA, Dammacco F (2006) Generation of biologically active linear and cyclic peptides has revealed a unique fine specificity of rituximab and its possible cross-reactivity with acid sphingomyelinase-like phosphodiesterase 3b precursor. Blood 107:1070–1077. https://doi.org/10.1182/blood-2005-04-1769

    Article  CAS  PubMed  Google Scholar 

  83. Watanabe S, Hirono K, Aizawa T, Tsugawa K, Joh K, Imaizumi T, Tanaka H (2020) Podocyte sphingomyelin phosphodiesterase acid-like 3b decreases among children with idiopathic nephrotic syndrome. Clin Exp Nephrol. https://doi.org/10.1007/s10157-020-01970-0

  84. Takahashi Y, Ikezumi Y, Saitoh A (2017) Rituximab protects podocytes and exerts anti-proteinuric effects in rat adriamycin-induced nephropathy independent of B-lymphocytes. Nephrology (Carlton) 22:49–57. https://doi.org/10.1111/nep.12737

    Article  CAS  Google Scholar 

  85. Tasaki M, Shimizu A, Hanekamp I, Torabi R, Villani V, Yamada K (2014) Rituximab treatment prevents the early development of proteinuria following pig-to-baboon xeno-kidney transplantation. J Am Soc Nephrol 25:737–744. https://doi.org/10.1681/ASN.2013040363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lafayette RA, Canetta PA, Rovin BH, Appel GB, Novak J, Nath KA, Sethi S, Tumlin JA, Mehta K, Hogan M, Erickson S, Julian BA, Leung N, Enders FT, Brown R, Knoppova B, Hall S, Fervenza FC (2017) A randomized controlled trial of rituximab in IgA nephropathy with proteinuria and renal dysfunction. J Am Soc Nephrol 28:1306–1313. https://doi.org/10.1681/ASN.2016060640

    Article  CAS  PubMed  Google Scholar 

  87. Hervey PS, Keam SJ (2006) Abatacept. BioDrugs 20:53–62. https://doi.org/10.2165/00063030-200620010-00004

    Article  CAS  PubMed  Google Scholar 

  88. Collins M, Ling V, Carreno BM (2005) The B7 family of immune-regulatory ligands. Genome Biol 6:223. https://doi.org/10.1186/gb-2005-6-6-223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Genovese MC, Becker JC, Schiff M, Luggen M, Sherrer Y, Kremer J, Birbara C, Box J, Natarajan K, Nuamah I, Li T, Aranda R, Hagerty DT, Dougados M (2005) Abatacept for rheumatoid arthritis refractory to tumor necrosis factor alpha inhibition. N Engl J Med 353:1114–1123. https://doi.org/10.1056/NEJMoa050524

    Article  CAS  PubMed  Google Scholar 

  90. Ishimoto T, Cara-Fuentes G, Wang H, Shimada M, Wasserfall CH, Winter WE, Rivard CJ, Araya CE, Saleem MA, Mathieson PW, Johnson RJ, Garin EH (2013) Serum from minimal change patients in relapse increases CD80 expression in cultured podocytes. Pediatr Nephrol 28:1803–1812. https://doi.org/10.1007/s00467-013-2498-4

    Article  PubMed  PubMed Central  Google Scholar 

  91. Garin EH, Reiser J, Cara-Fuentes G, Wei C, Matar D, Wang H, Alachkar N, Johnson RJ (2015) Case series: CTLA4-IgG1 therapy in minimal change disease and focal segmental glomerulosclerosis. Pediatr Nephrol 30:469–477. https://doi.org/10.1007/s00467-014-2957-6

    Article  PubMed  Google Scholar 

  92. Fiorina P, Vergani A, Bassi R, Niewczas MA, Altintas MM, Pezzolesi MG, D'Addio F, Chin M, Tezza S, Ben Nasr M, Mattinzoli D, Ikehata M, Corradi D, Schumacher V, Buvall L, Yu CC, Chang JM, La Rosa S, Finzi G, Solini A, Sayegh MH (2014) Role of podocyte B7-1 in diabetic nephropathy. J Am Soc Nephrol 25:1415–1429. https://doi.org/10.1681/ASN.2013050518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Appel GB (2015) Therapy: new data do not support use of abatacept in diabetic nephropathy. Nat Rev Nephrol 11:692–694. https://doi.org/10.1038/nrneph.2015.178

    Article  CAS  PubMed  Google Scholar 

  94. Maldonado M (2018) A phase II randomized, placebo-controlled, double-blind, parallel arms, pilot study to evaluate the efficacy and safety of intravenous abatacept in treatment resistant nephrotic syndrome (focal segmental glomerulosclerosis/ minimal change disease). ClinicalTrials.gov Identifier: NCT02592798. https://www.clinicaltrials.gov/ProvidedDocs/98/NCT02592798/Prot_000.pdf. Accessed 5 Mar 2021

  95. Hackl A, Ehren R, Weber LT (2017) Effect of mycophenolic acid in experimental, nontransplant glomerular diseases: new mechanisms beyond immune cells. Pediatr Nephrol 32:1315–1322. https://doi.org/10.1007/s00467-016-3437-y

    Article  PubMed  Google Scholar 

  96. Chang M, Chen B, Shaffner J, Dworkin LD, Gong R (2021) Melanocortin system in kidney homeostasis and disease: novel therapeutic opportunities. Front Physiol 12:651236. https://doi.org/10.3389/fphys.2021.651236

    Article  PubMed  PubMed Central  Google Scholar 

  97. Arneil GC, Wilson HE (1953) A.C.T.H. in nephrosis. Arch Dis Child 28:372–380. https://doi.org/10.1136/adc.28.141.372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Piel CF (1956) Management of nephrosis; the use of long continued hormone therapy. Calif Med 85:152–156

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Lauson HD, Forman CW, McNamara H, Mattar G, Barnett HL (1954) The effect of corticotropin (ACTH) on glomerular permeability to albumin in children with the nephrotic syndrome. J Clin Invest 33:657–664. https://doi.org/10.1172/JCI102936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Berg AL, Arnadottir M (2000) ACTH revisited—potential implications for patients with renal disease. Nephrol Dial Transplant 15:940–942. https://doi.org/10.1093/ndt/15.7.940

    Article  CAS  PubMed  Google Scholar 

  101. Ponticelli C, Passerini P, Salvadori M, Manno C, Viola BF, Pasquali S, Mandolfo S, Messa P (2006) A randomized pilot trial comparing methylprednisolone plus a cytotoxic agent versus synthetic adrenocorticotropic hormone in idiopathic membranous nephropathy. Am J Kidney Dis 47:233–240. https://doi.org/10.1053/j.ajkd.2005.10.016

    Article  CAS  PubMed  Google Scholar 

  102. Bomback AS, Canetta PA, Beck LH Jr, Ayalon R, Radhakrishnan J, Appel GB (2012) Treatment of resistant glomerular diseases with adrenocorticotropic hormone gel: a prospective trial. Am J Nephrol 36:58–67. https://doi.org/10.1159/000339287

    Article  CAS  PubMed  Google Scholar 

  103. Lindskog A, Ebefors K, Johansson ME, Stefánsson B, Granqvist A, Arnadottir M, Berg AL, Nyström J, Haraldsson B (2010) Melanocortin 1 receptor agonists reduce proteinuria. J Am Soc Nephrol 21:1290–1298. https://doi.org/10.1681/ASN.2009101025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Chhajlani V (1996) Distribution of cDNA for melanocortin receptor subtypes in human tissues. Biochem Mol Biol Int 38:73–80

    CAS  PubMed  Google Scholar 

  105. Katritch V, Cherezov V, Stevens RC (2013) Structure-function of the G protein-coupled receptor superfamily. nn. Rev Pharmacol Toxicol 53:531–556. https://doi.org/10.1146/annurev-pharmtox-032112-135923

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aris Tsalouchos.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salvadori, M., Tsalouchos, A. How immunosuppressive drugs may directly target podocytes in glomerular diseases. Pediatr Nephrol 37, 1431–1441 (2022). https://doi.org/10.1007/s00467-021-05196-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-021-05196-4

Keywords

Navigation