Skip to main content

Advertisement

Log in

Role of actin cytoskeleton in podocytes

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

The selectivity of the glomerular filter is established by physical, chemical, and signaling interplay among its three core constituents: glomerular endothelial cells, the glomerular basement membrane, and podocytes. Functional impairment or injury of any of these three components can lead to proteinuria. Podocytes are injured in many forms of human and experimental glomerular disease, including minimal change disease, focal segmental glomerulosclerosis, and diabetes mellitus. One of the earliest signs of podocyte injury is loss of their distinct structure, which is driven by dysregulated dynamics of the actin cytoskeleton. The status of the actin cytoskeleton in podocytes depends on a set of actin binding proteins, nucleators and inhibitors of actin polymerization, and regulatory GTPases. Mutations that alter protein function in each category have been implicated in glomerular diseases in humans and animal models. In addition, a growing body of studies suggest that pharmacological modifications of the actin cytoskeleton have the potential to become novel therapeutics for podocyte-dependent chronic kidney diseases. This review presents an overview of the essential proteins that establish actin cytoskeleton in podocytes and studies demonstrating the feasibility of drugging actin cytoskeleton in kidney diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pavenstädt H, Kriz W, Kretzler M (2003) Cell biology of the glomerular podocyte. Physiol Rev 83:253–307

    Article  PubMed  Google Scholar 

  2. Kerjaschki D (2001) Caught flat-footed: podocyte damage and the molecular bases of focal glomerulosclerosis. J Clin Invest 108:1583–1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Reiser J, von Gersdorff G, Simons M, Schwarz K, Faul C, Giardino L, Heider T, Loos M, Mundel P (2002) Novel concepts in understanding and management of glomerular proteinuria. Nephrol Dial Transplant 17:951–955

    Article  CAS  PubMed  Google Scholar 

  4. Saleem MA, O'Hare MJ, Reiser J, Coward RJ, Inward CD, Farren T, Xing CY, Ni L, Mathieson PW, Mundel P (2002) A conditionally immortalized human podocyte cell line demonstrating nephrin and podocin expression. J Am Soc Nephrol 13:630–638

    Article  CAS  PubMed  Google Scholar 

  5. Kistler AD, Singh G, Pippin J, Altintas MM, Yu H, Fernandez IC, Gu C, Wilson C, Srivastava SK, Dietrich A, Walz K, Kerjaschki D, Ruiz P, Dryer S, Sever S, Dinda AK, Faul C, Reiser J (2013) TRPC6 protects podocytes during complement-mediated glomerular disease. J Biol Chem 288:36598–36609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Reiser J, Sever S (2013) Podocyte biology and pathogenesis of kidney disease. Ann Rev Med 64:357–366

    Article  CAS  PubMed  Google Scholar 

  7. Reiser J, Sever S, Faul C (2014) Signal transduction in podocytes--spotlight on receptor tyrosine kinases. Nat Rev Nephrol 10:104–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brinkkoetter PT, Ising C, Benzing T (2013) The role of the podocyte in albumin filtration. Nat Rev Nephrol 9:328–336

    Article  CAS  PubMed  Google Scholar 

  9. Butt L, Unnersjö-Jess D, Höhne M, Edwards A, Binz-Lotter J, Reilly D, Hahnfeldt R, Ziegler V, Fremter K, Rinschen MM, Helmstädter M, Ebert LK, Castrop H, Hackl MJ, Walz G, Brinkkoetter PT, Liebau MC, Tory K, Hoyer PF, Beck BB, Brismar H, Blom H, Schermer B, Benzing T (2020) A molecular mechanism explaining albuminuria in kidney disease. Nat Metab 2:461–474

    Article  CAS  PubMed  Google Scholar 

  10. Benzing T (2020) Molecular design of the kidney filtration barrier. Trans Am Clin Climatol Assoc 131:125–139

    PubMed  PubMed Central  Google Scholar 

  11. Santin S, García-Maset R, Ruíz P, Giménez I, Zamora I, Peña A, Madrid A, Camacho JA, Fraga G, Sánchez-Moreno A, Cobo MA, Bernis C, Ortiz A, de Pablos AL, Pintos G, Justa ML, Hidalgo-Barquero E, Fernández-Llama P, Ballarín J, Ars E, Torra R, FSGS Spanish Study Group (2009) Nephrin mutations cause childhood- and adult-onset focal segmental glomerulosclerosis. Kidney Int 76:1268–1276

    Article  CAS  PubMed  Google Scholar 

  12. Shih NY, Li J, Karpitskii V, Nguyen A, Dustin ML, Kanagawa O, Miner JH, Shaw AS (1999) Congenital nephrotic syndrome in mice lacking CD2-associated protein. Science 286:312–315

    Article  CAS  PubMed  Google Scholar 

  13. Kaplan JM, Kim SH, North KN, Rennke H, Correia LA, Tong HQ, Mathis BJ, Rodríguez-Pérez JC, Allen PG, Beggs AH, Pollak MR (2000) Mutations in ACTN4, encoding alpha-actinin-4, cause familial focal segmental glomerulosclerosis. Nat Genet 24:251–256

    Article  CAS  PubMed  Google Scholar 

  14. Brown EJ, Schlondorff JS, Becker DJ, Tsukaguchi H, Tonna SJ, Uscinski AL, Higgs HN, Henderson JM, Pollak MR (2010) Mutations in the formin gene INF2 cause focal segmental glomerulosclerosis. Nat Genet 42:72–76

    Article  CAS  PubMed  Google Scholar 

  15. Boyer O, Benoit G, Gribouval O, Nevo F, Tete MJ, Dantal J, Gilbert-Dussardier B, Touchard G, Karras A, Presne C, Grunfeld JP, Legendre C, Joly D, Rieu P, Mohsin N, Hannedouche T, Moal V, Gubler MC, Broutin I, Mollet G, Antignac C (2011) Mutations in INF2 are a major cause of autosomal dominant focal segmental glomerulosclerosis. J Am Soc Nephrol 22:239–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Faul C, Asanuma K, Yanagida-Asanuma E, Kim K, Mundel P (2007) Actin up: regulation of podocyte structure and function by components of the actin cytoskeleton. Trends Cell Biol 17:428–437

    Article  CAS  PubMed  Google Scholar 

  17. Sever S, Schiffer M (2018) Actin dynamics at focal adhesions: a common endpoint and putative therapeutic target for proteinuric kidney diseases. Kidney Int 93:1298–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Martin CE, Jones N (2018) Nephrin signaling in the podocyte: an updated view of signal regulation at the slit diaphragm and beyond. Front Endocrinol (Lausanne) 9:302

    Article  Google Scholar 

  19. Perico L, Conti S, Benigni A, Remuzzi G (2016) Podocyte-actin dynamics in health and disease. Nat Rev Nephrol 12:692–710

    Article  CAS  PubMed  Google Scholar 

  20. Case LB, Waterman CM (2015) Integration of actin dynamics and cell adhesion by a three-dimensional, mechanosensitive molecular clutch. Nat Cell Biol 17:955–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Spiering D, Hodgson L (2011) Dynamics of the rho-family small GTPases in actin regulation and motility. Cell Adhes Migr 5:170–180

    Article  Google Scholar 

  22. Basile DP, Dwinell MR, Wang SJ, Shames BD, Donohoe DL, Chen S, Sreedharan R, Van Why SK (2013) Chromosome substitution modulates resistance to ischemia reperfusion injury in Brown Norway rats. Kidney Int 83:242–250

    Article  CAS  PubMed  Google Scholar 

  23. Blattner SM, Hodgin JB, Nishio M, Wylie SA, Saha J, Soofi AA, Vining C, Randolph A, Herbach N, Wanke R, Atkins KB, Gyung Kang H, Henger A, Brakebusch C, Holzman LB, Kretzler M (2013) Divergent functions of the Rho GTPases Rac1 and Cdc42 in podocyte injury. Kidney Int 84:920–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Akilesh S, Suleiman H, Yu H, Stander MC, Lavin P, Gbadegesin R, Antignac C, Pollak M, Kopp JB, Winn MP, Shaw AS (2011) Arhgap24 inactivates Rac1 in mouse podocytes, and a mutant form is associated with familial focal segmental glomerulosclerosis. J Clin Invest 121:4127–4137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gee HY, Saisawat P, Ashraf S, Hurd TW, Vega-Warner V, Fang H, Beck BB, Gribouval O, Zhou W, Diaz KA, Natarajan S, Wiggins RC, Lovric S, Chernin G, Schoeb DS, Ovunc B, Frishberg Y, Soliman NA, Fathy HM, Goebel H, Hoefele J, Weber LT, Innis JW, Faul C, Han Z, Washburn J, Antignac C, Levy S, Otto EA, Hildebrandt F (2013) ARHGDIA mutations cause nephrotic syndrome via defective RHO GTPase signaling. J Clin Invest 123:3243–3253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sugano Y, Lindenmeyer MT, Auberger I, Ziegler U, Segerer S, Cohen CD, Neuhauss SCF, Loffing J (2015) The Rho-GTPase binding protein IQGAP2 is required for the glomerular filtration barrier. Kidney Int 88:1047–1056

    Article  CAS  PubMed  Google Scholar 

  27. Sever S, Altintas MM, Nankoe SR, Moller CC, Ko D, Wei C, Henderson J, del Re EC, Hsing L, Erickson A, Cohen CD, Kretzler M, Kerjaschki D, Rudensky A, Nikolic B, Reiser J (2007) Proteolytic processing of dynamin by cytoplasmic cathepsin L is a mechanism for proteinuric kidney disease. J Clin Invest 117:2095–2104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Soda K, Balkin DM, Ferguson SM, Paradise S, Milosevic I, Giovedi S, Volpicelli-Daley L, Tian X, Wu Y, Ma H, Son SH, Zheng R, Moeckel G, Cremona O, Holzman LB, De Camilli P, Ishibe S (2012) Role of dynamin, synaptojanin, and endophilin in podocyte foot processes. J Clin Invest 122:4401–4411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sever S, Chang J, Gu C (2013) Dynamin rings: not just for fission. Traffic 14:1194–1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Reubold TF, Faelber K, Plattner N, Posor Y, Ketel K, Curth U, Schlegel J, Anand R, Manstein DJ, Noé F, Haucke V, Daumke O, Eschenburg S (2015) Crystal structure of the dynamin tetramer. Nature 525:404–408

    Article  CAS  PubMed  Google Scholar 

  31. Sever S, Muhlberg AB, Schmid SL (1999) Impairment of dynamin's GAP domain stimulates receptor-mediated endocytosis. Nature 398:481–486

    Article  CAS  PubMed  Google Scholar 

  32. Binns DD, Helms MK, Barylko B, Davis CT, Jameson DM, Albanesi JP, Eccleston JF (2000) The mechanism of GTP hydrolysis by dynamin II: a transient kinetic study. Biochemistry 39:7188–7196

    Article  CAS  PubMed  Google Scholar 

  33. Gu C, Yaddanapudi S, Weins A, Osborn T, Reiser J, Pollak M, Hartwig J, Sever S (2010) Direct dynamin-actin interactions regulate the actin cytoskeleton. EMBO J 29:3593–3606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gu C, Chang J, Shchedrina VA, Pham VA, Hartwig JH, Suphamungmee W, Lehman W, Hyman BT, Bacskai BJ, Sever S (2014) Regulation of dynamin oligomerization in cells: the role of dynamin-actin interactions and its GTPase activity. Traffic 15:819–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gu C, Lee HW, Garborcauskas G, Reiser J, Gupta V, Sever S (2017) Dynamin autonomously regulates podocyte focal adhesion maturation. J Am Soc Nephrol 28:446–451

    Article  CAS  PubMed  Google Scholar 

  36. Schiffer M, Teng B, Gu C, Shchedrina VA, Kasaikina M, Pham VA, Hanke N, Rong S, Gueler F, Schroder P, Tossidou I, Park JK, Staggs L, Haller H, Erschow S, Hilfiker-Kleiner D, Wei C, Chen C, Tardi N, Hakroush S, Selig MK, Vasilyev A, Merscher S, Reiser J, Sever S (2015) Pharmacological targeting of actin-dependent dynamin oligomerization ameliorates chronic kidney disease in diverse animal models. Nat Med 21:601–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rollason R, Wherlock M, Heath JA, Heesom KJ, Saleem MA, Welsh GI (2016) Disease causing mutations in inverted formin 2 regulate its binding to G-actin, F-actin capping protein (CapZ alpha-1) and profilin 2. Biosci Rep 36:e00302

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Schell C, Sabass B, Helmstaedter M, Geist F, Abed A, Yasuda-Yamahara M, Sigle A, Maier JI, Grahammer F, Siegerist F, Artelt N, Endlich N, Kerjaschki D, Arnold HH, Dengjel J, Rogg M, Huber TB (2018) ARP3 controls the podocyte architecture at the kidney filtration barrier. Dev Cell 47:741–757 e8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sun H, Al-Romaih KI, MacRae CA, Pollak MR (2014) Human kidney disease-causing INF2 mutations perturb Rho/Dia signaling in the glomerulus. EBioMedicine 1:107–115

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hohenstein B, Kasperek L, Kobelt DJ, Daniel C, Gambaryan S, Renné T, Walter U, Amann KU, Hugo CP (2005) Vasodilator-stimulated phosphoprotein-deficient mice demonstrate increased platelet activation but improved renal endothelial preservation and regeneration in passive nephrotoxic nephritis. J Am Soc Nephrol 16:986–996

    Article  CAS  PubMed  Google Scholar 

  41. Arrondel C, Vodovar N, Knebelmann B, Grünfeld JP, Gubler MC, Antignac C, Heidet L (2002) Expression of the nonmuscle myosin heavy chain IIA in the human kidney and screening for MYH9 mutations in Epstein and Fechtner syndromes. J Am Soc Nephrol 13:65–74

    Article  CAS  PubMed  Google Scholar 

  42. Johnstone DB, Zhang J, George B, Leon C, Gachet C, Wong H, Parekh R, Holzman LB (2011) Podocyte-specific deletion of Myh9 encoding nonmuscle myosin heavy chain 2A predisposes mice to glomerulopathy. Mol Cell Biol 31:2162–2170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mele C, Iatropoulos P, Donadelli R, Calabria A, Maranta R, Cassis P, Buelli S, Tomasoni S, Piras R, Krendel M, Bettoni S, Morigi M, Delledonne M, Pecoraro C, Abbate I, Capobianchi MR, Hildebrandt F, Otto E, Schaefer F, Macciardi F, Ozaltin F, Emre S, Ibsirlioglu T, Benigni A, Remuzzi G, Noris M, PodoNet Consortium (2011) MYO1E mutations and childhood familial focal segmental glomerulosclerosis. N Engl J Med 365:295–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Campellone KG, Welch MD (2010) A nucleator arms race: cellular control of actin assembly. Nat Rev Mol Cell Biol 11:237–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Goley ED, Welch MD (2006) The ARP2/3 complex: an actin nucleator comes of age. Nat Rev Mol Cell Biol 7:713–726

    Article  CAS  PubMed  Google Scholar 

  46. Hegsted A, Yingling CV, Pruyne D (2017) Inverted formins: a subfamily of atypical formins. Cytoskeleton (Hoboken) 74:405–419

    Article  Google Scholar 

  47. Sun H, Schlondorff J, Higgs HN, Pollak MR (2013) Inverted formin 2 regulates actin dynamics by antagonizing rho/diaphanous-related formin signaling. J Am Soc Nephrol 24:917–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mizuno H, Watanabe N (2012) mDia1 and formins: screw cap of the actin filament. Biophysics (Nagoya-shi) 8:95–102

    Article  CAS  Google Scholar 

  49. Subramanian B, Sun H, Yan P, Charoonratana VT, Higgs HN, Wang F, Lai KV, Valenzuela DM, Brown EJ, Schlöndorff JS, Pollak MR (2016) Mice with mutant Inf2 show impaired podocyte and slit diaphragm integrity in response to protamine-induced kidney injury. Kidney Int 90:363–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lee HW, Khan SQ, Faridi MH, Wei C, Tardi NJ, Altintas MM, Elshabrawy HA, Mangos S, Quick KL, Sever S, Reiser J, Gupta V (2015) A Podocyte-based automated screening assay identifies protective small molecules. J Am Soc Nephrol 26:2741–2752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li M, Armelloni S, Zennaro C, Wei C, Corbelli A, Ikehata M, Berra S, Giardino L, Mattinzoli D, Watanabe S, Agostoni C, Edefonti A, Reiser J, Messa P, Rastaldi MP (2014) BDNF repairs podocyte damage by microRNA-mediated increase of actin polymerization. J Pathol 235:731–744

    Article  CAS  Google Scholar 

  52. Tian X, Ishibe S (2016) Targeting the podocyte cytoskeleton: from pathogenesis to therapy in proteinuric kidney disease. Nephrol Dial Transplant 31:1577–1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shi J, Wei L (2013) Rho kinases in cardiovascular physiology and pathophysiology: the effect of fasudil. J Cardiovasc Pharmacol 62:341–354

    Article  CAS  PubMed  Google Scholar 

  54. Komers R (2013) Rho kinase inhibition in diabetic kidney disease. Br J Clin Pharmacol 76:551–559

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Babelova A, Jansen F, Sander K, Lohn M, Schafer L, Fork C, Ruetten H, Plettenburg O, Stark H, Daniel C, Amann K, Pavenstädt H, Jung O, Brandes RP (2013) Activation of Rac-1 and RhoA contributes to podocyte injury in chronic kidney disease. PLoS One 8:e80328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nagatoya K, Moriyama T, Kawada N, Takeji M, Oseto S, Murozono T, Ando A, Imai E, Hori M (2002) Y-27632 prevents tubulointerstitial fibrosis in mouse kidneys with unilateral ureteral obstruction. Kidney Int 61:1684–1695

    Article  CAS  PubMed  Google Scholar 

  57. Kentrup D, Reuter S, Schnöckel U, Grabner A, Edemir B, Pavenstädt H, Schober O, Schäfers M, Schlatter E, Büssemaker E (2011) Hydroxyfasudil-mediated inhibition of ROCK1 and ROCK2 improves kidney function in rat renal acute ischemia-reperfusion injury. PLoS One 6:e26419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Huang J, Dey R, Wang Y, Jakoncic J, Kurinov I, Huang XY (2018) Structural insights into the induced-fit inhibition of fascin by a small-molecule inhibitor. J Mol Biol 430:1324–1335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tandon R, Levental I, Huang C, Byfield FJ, Ziembicki J, Schelling JR, Bruggeman LA, Sedor JR, Janmey PA, Miller RT (2007) HIV infection changes glomerular podocyte cytoskeletal composition and results in distinct cellular mechanical properties. Am J Physiol Renal Physiol 292:F701–F710

    Article  CAS  PubMed  Google Scholar 

  60. Kliewe F, Scharf C, Rogge H, Darm K, Lindenmeyer MT, Amann K, Cohen CD, Endlich K, Endlich N (2017) Studying the role of fascin-1 in mechanically stressed podocytes. Sci Rep 7:9916

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanja Sever.

Ethics declarations

Conflict of interest

S. S. is the co-founder and shareholder of Trisaq, a biotechnology company that develops novel kidney-protective therapies.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sever, S. Role of actin cytoskeleton in podocytes. Pediatr Nephrol 36, 2607–2614 (2021). https://doi.org/10.1007/s00467-020-04812-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-020-04812-z

Keywords

Navigation