Skip to main content
Log in

Metabolic programming of nephron progenitor cell fate

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Metabolic pathways are one of the first responses at the cellular level to maternal/fetal interface stressors. Studies have revealed the previously unrecognized contributions of intermediary metabolism to developmental programs. Here, we provide an overview of cellular metabolic pathways and the cues that modulate metabolic states. We discuss the developmental and physiological implications of metabolic reprogramming and the key role of metabolites in epigenetic and epiproteomic modifications during embryonic development and with respect to kidney development and nephrogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

α-KG:

Alpha ketoglutarate

CAKUT:

Congenital abnormalities of kidney and urinary tract

CM:

Cap mesenchyme

CKD:

Chronic kidney disease

CVD:

Cardiovascular disease

ESC:

Embryonic stem cell

FAD:

Flavin adenine dinucleotide

GFR:

Glomerular filtration rate

HBP:

Hexosamine biosynthesis pathway

HSPG:

Heparan sulfate proteoglycans

JmjC:

Jumonji C-domain containing protein family of demethylases

LSD:

Lysine-specific demethylase

MM:

Metanephric mesenchyme

MPC1/2:

Mitochondrial pyruvate carrier

NAD:

Nicotinamide adenine dinucleotide

NPC:

Nephron progenitor cells

PFKFB3:

6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase

PPP:

Pentose phosphate pathway

PSC:

Pluripotent stem cells

PTM:

Posttranslational modification

RTK:

Receptor tyrosine kinase

SAM:

S-Adenosyl methionine

TCA:

Tricarboxylic acid cycle

UB:

Ureteric bud

VHL:

Von Hippel–Lindau tumor suppressor

References

  1. Boubred F, Saint-Faust M, Buffat C, Ligi I, Grandvuillemin I, Simeoni U (2013) Developmental origins of chronic renal disease: an integrative hypothesis. Int J Nephrol 2013:346067

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Paixão AD, Alexander BT (2013) How the kidney is impacted by the perinatal maternal environment to develop hypertension. Biol Reprod 89:144

    PubMed  PubMed Central  Google Scholar 

  3. Sarnak MJ, Levey AS, Schoolwerth AC, Coresh J, Culleton B, Hamm LL, McCullough PA, Kasiske BL, Kelepouris E, Klag MJ, Parfrey P, Pfeffer M, Raij L, Spinosa DJ, Wilson PW, American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention (2003) Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Hypertension 42:1050–1065

    CAS  PubMed  Google Scholar 

  4. Benz K, Amann K (2010) Maternal nutrition, low nephron number and arterial hypertension in later life. Biochim Biophys Acta 1802:1309–1317

    CAS  PubMed  Google Scholar 

  5. Sanna-Cherchi S, Westland R, Ghiggeri GM, Gharavi AG (2018) Genetic basis of human congenital anomalies of the kidney and urinary tract. J Clin Invest 128:4–15

    PubMed  PubMed Central  Google Scholar 

  6. Cargill K, Sims-Lucas S (2020) Metabolic requirements of the nephron. Pediatr Nephrol 35:1–8

    PubMed  Google Scholar 

  7. Folmes CD, Nelson TJ, Dzeja PP, Terzic A (2012) Energy metabolism plasticity enables stemness programs. Ann N Y Acad Sci 1254:82–89

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Miyazawa H, Aulehla A (2018) Revisiting the role of metabolism during development. Development 145:dev131110

  9. Zhu J, Thompson CB (2019) Metabolic regulation of cell growth and proliferation. Nat Rev Mol Cell Biol 20:436–450

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Schell JC, Wisidagama DR, Bensard C, Zhao H, Wei P, Tanner J, Flores A, Mohlman J, Sorensen LK, Earl CS, Olson KA, Miao R, Waller TC, Delker D, Kanth P, Jiang L, DeBerardinis RJ, Bronner MP, Li DY, Cox JE, Christofk HR, Lowry WE, Thummel CS, Rutter J (2017) Control of intestinal stem cell function and proliferation by mitochondrial pyruvate metabolism. Nat Cell Biol 19:1027–1036

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Gu W, Gaeta X, Sahakyan A, Chan AB, Hong CS, Kim R, Braas D, Plath K, Lowry WE, Christofk HR (2016) Glycolytic metabolism plays a functional role in regulating human pluripotent stem cell state. Cell Stem Cell 19:476–490

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen S, Brunskill EW, Potter SS, Dexheimer PJ, Salomonis N, Aronow BJ, Hong CI, Zhang T, Kopan R (2015) Intrinsic age-dependent changes and cell-cell contacts regulate nephron progenitor lifespan. Dev Cell 35:49–62

    PubMed  PubMed Central  Google Scholar 

  13. Jiang P, Du W, Wu M (2014) Regulation of the pentose phosphate pathway in cancer. Protein Cell 5:592–602

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Stincone A, Prigione A, Cramer T, Wamelink MMC, Campbell K, Cheung E, Olin-Sandoval V, Grüning NM, Krüger A, Alam MT, Keller MA, Breitenbach M, Brindle KM, Rabinowitz JD, Ralser M (2015) The return of metabolism: biochemistry and physiology of the pentose phosphate pathway. Biol Rev Camb Philos Soc 90:927–963

    PubMed  Google Scholar 

  15. Etchegaray JP, Mostoslavsky R (2016) Interplay between metabolism and epigenetics: a nuclear adaptation to environmental changes. Mol Cell 62:695–711

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Akella NM, Ciraku L, Reginato MJ (2019) Fueling the fire: emerging role of the hexosamine biosynthetic pathway in cancer. BMC Biol 17:52

    PubMed  PubMed Central  Google Scholar 

  17. Chi F, Sharpley MS, Nagaraj R, Roy SS, Banerjee U (2020) Glycolysis-independent glucose metabolism distinguishes TE from ICM fate during mammalian embryogenesis. Dev Cell 53:9–26 e4

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kühlbrandt W (2015) Structure and function of mitochondrial membrane protein complexes. BMC Biol 13:89

    PubMed  PubMed Central  Google Scholar 

  19. Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191:144–148

    CAS  PubMed  Google Scholar 

  20. McCommis KS, Finck BN (2015) Mitochondrial pyruvate transport: a historical perspective and future research directions. Biochem J 466:443–454

    CAS  PubMed  Google Scholar 

  21. Shyh-Chang N, Daley GQ, Cantley LC (2013) Stem cell metabolism in tissue development and aging. Development 140:2535–2547

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kerner J, Hoppel C (2000) Fatty acid import into mitochondria. Biochim Biophys Acta 1486:1–17

    CAS  PubMed  Google Scholar 

  23. Zhang L, Marsboom G, Glick D, Zhang Y, Toth PT, Jones N, Malik AB, Rehman J (2014) Bioenergetic shifts during transitions between stem cell states (2013 Grover Conference series). Pulm Circ 4:387–394

    PubMed  PubMed Central  Google Scholar 

  24. Locasale JW, Cantley LC (2011) Metabolic flux and the regulation of mammalian cell growth. Cell Metab 14:443–451

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Harvey AJ, Rathjen J, Gardner DK (2016) Metaboloepigenetic regulation of pluripotent stem cells. Stem Cells Int 2016:1816525

    PubMed  Google Scholar 

  26. Folmes CD, Dzeja PP, Nelson TJ, Terzic A (2012) Metabolic plasticity in stem cell homeostasis and differentiation. Cell Stem Cell 11:596–606

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Shi L, Tu BP (2015) Acetyl-CoA and the regulation of metabolism: mechanisms and consequences. Curr Opin Cell Biol 33:125–131

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Anderson KA, Madsen AS, Olsen CA, Hirschey MD (2017) Metabolic control by sirtuins and other enzymes that sense NAD(+), NADH, or their ratio. Biochim Biophys Acta Bioenerg 1858:991–998

    CAS  PubMed  Google Scholar 

  29. Hui S, Ghergurovich JM, Morscher RJ, Jang C, Teng X, Lu W, Esparza LA, Reya T, Zhan L, Yanxiang Guo J, White E, Rabinowitz JD (2017) Glucose feeds the TCA cycle via circulating lactate. Nature 551:115–118

    PubMed  PubMed Central  Google Scholar 

  30. Rodríguez-Colman MJ, Schewe M, Meerlo M, Stigter E, Gerrits J, Pras-Raves M, Sacchetti A, Hornsveld M, Oost KC, Snippert HJ, Verhoeven-Duif N, Fodde R, Burgering BM (2017) Interplay between metabolic identities in the intestinal crypt supports stem cell function. Nature 543:424–427

    PubMed  Google Scholar 

  31. Gut P, Verdin E (2013) The nexus of chromatin regulation and intermediary metabolism. Nature 502:489–498

    CAS  PubMed  Google Scholar 

  32. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Suda T, Takubo K, Semenza GL (2011) Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell 9:298–310

    CAS  PubMed  Google Scholar 

  34. Chen CT, Shih YR, Kuo TK, Lee OK, Wei YH (2008) Coordinated changes of mitochondrial biogenesis and antioxidant enzymes during osteogenic differentiation of human mesenchymal stem cells. Stem Cells 26:960–968

    CAS  PubMed  Google Scholar 

  35. Knobloch M, Braun SMG, Zurkirchen L, von Schoultz C, Zamboni N, Araúzo-Bravo MJ, Kovacs WJ, Karalay O, Suter U, Machado RAC, Roccio M, Lutolf MP, Semenkovich CF, Jessberger S (2013) Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis. Nature 493:226–230

    CAS  PubMed  Google Scholar 

  36. Thompson CB, Bielska AA (2019) Growth factors stimulate anabolic metabolism by directing nutrient uptake. J Biol Chem 294:17883–17888

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Novellasdemunt L, Tato I, Navarro-Sabate A, Ruiz-Meana M, Méndez-Lucas A, Perales JC, Garcia-Dorado D, Ventura F, Bartrons R, Rosa JL (2013) Akt-dependent activation of the heart 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB2) isoenzyme by amino acids. J Biol Chem 288:10640–10651

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Roberts DJ, Tan-Sah VP, Smith JM, Miyamoto S (2013) Akt phosphorylates HK-II at Thr-473 and increases mitochondrial HK-II association to protect cardiomyocytes. J Biol Chem 288:23798–23806

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Sano H, Kane S, Sano E, Mîinea CP, Asara JM, Lane WS, Garner CW, Lienhard GE (2003) Insulin-stimulated phosphorylation of a Rab GTPase-activating protein regulates GLUT4 translocation. J Biol Chem 278:14599–14602

    CAS  PubMed  Google Scholar 

  40. Hu H, Juvekar A, Lyssiotis CA, Lien EC, Albeck JG, Oh D, Varma G, Hung YP, Ullas S, Lauring J, Seth P, Lundquist MR, Tolan DR, Grant AK, Needleman DJ, Asara JM, Cantley LC, Wulf GM (2016) Phosphoinositide 3-kinase regulates glycolysis through mobilization of aldolase from the actin cytoskeleton. Cell 164:433–446

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Oginuma M, Moncuquet P, Xiong F, Karoly E, Chal J, Guevorkian K, Pourquié O (2017) A gradient of glycolytic activity coordinates FGF and Wnt signaling during elongation of the body axis in amniote embryos. Dev Cell 40:342–353 e10

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Bulusu V, Prior N, Snaebjornsson MT, Kuehne A, Sonnen KF, Kress J, Stein F, Schultz C, Sauer U, Aulehla A (2017) Spatiotemporal analysis of a glycolytic activity gradient linked to mouse embryo mesoderm development. Dev Cell 40(331–341):e4

    Google Scholar 

  43. Brooks GA (2018) The science and translation of lactate shuttle theory. Cell Metab 27:757–785

    CAS  PubMed  Google Scholar 

  44. San-Millan I, Brooks GA (2018) Assessment of metabolic flexibility by means of measuring blood lactate, fat, and carbohydrate oxidation responses to exercise in professional endurance athletes and less-fit individuals. Sports Med 48:467–479

    PubMed  Google Scholar 

  45. Sonveaux P, Végran F, Schroeder T, Wergin MC, Verrax J, Rabbani ZN, De Saedeleer CJ, Kennedy KM, Diepart C, Jordan BF, Kelley MJ, Gallez B, Wahl ML, Feron O, Dewhirst MW (2008) Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest 118:3930–3942

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Faubert B, Li KY, Cai L, Hensley CT, Kim J, Zacharias LG, Yang C, Do QN, Doucette S, Burguete D, Li H, Huet G, Yuan Q, Wigal T, Butt Y, Ni M, Torrealba J, Oliver D, Lenkinski RE, Malloy CR, Wachsmann JW, Young JD, Kernstine K, DeBerardinis RJ (2017) Lactate metabolism in human lung tumors. Cell 171:358-371.e9

  47. Ihermann-Hella A, Hirashima T, Kupari J, Kurtzeborn K, Li H, Kwon HN, Cebrian C, Soofi A, Dapkunas A, Miinalainen I, Dressler GR, Matsuda M, Kuure S (2018) Dynamic MAPK/ERK activity sustains nephron progenitors through niche regulation and primes precursors for differentiation. Stem Cell Rep 11:912–928

    CAS  Google Scholar 

  48. Kim JH, Choi TG, Park S, Yun HR, Nguyen NNY, Jo YH, Jang M, Kim J, Kim J, Kang I, Ha J, Murphy MP, Tang DG, Kim SS (2018) Mitochondrial ROS-derived PTEN oxidation activates PI3K pathway for mTOR-induced myogenic autophagy. Cell Death Differ 25:1921–1937

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Ryall JG, Cliff T, Dalton S, Sartorelli V (2015) Metabolic reprogramming of stem cell epigenetics. Cell Stem Cell 17:651–662

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR, Thompson CB (2009) ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324:1076–1080

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Moussaieff A, Rouleau M, Kitsberg D, Cohen M, Levy G, Barasch D, Nemirovski A, Shen-Orr S, Laevsky I, Amit M, Bomze D, Elena-Herrmann B, Scherf T, Nissim-Rafinia M, Kempa S, Itskovitz-Eldor J, Meshorer E, Aberdam D, Nahmias Y (2015) Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells. Cell Metab 21:392–402

    CAS  PubMed  Google Scholar 

  52. Trefely S, Lovell CD, Snyder NW, Wellen KE (2020) Compartmentalised acyl-CoA metabolism and roles in chromatin regulation. Mol Metab 38:100941

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Poulain FE, Yost HJ (2015) Heparan sulfate proteoglycans: a sugar code for vertebrate development? Development 142:3456–3467

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kobayashi A, Mugford JW, Krautzberger AM, Naiman N, Liao J, McMahon AP (2014) Identification of a multipotent self-renewing stromal progenitor population during mammalian kidney organogenesis. Stem Cell Reports 3:650–662

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Short KM, Combes AN, Lefevre J, Ju AL, Georgas KM, Lamberton T, Cairncross O, Rumballe BA, McMahon AP, Hamilton NA, Smyth IM, Little MH (2014) Global quantification of tissue dynamics in the developing mouse kidney. Dev Cell 29:188–202

    CAS  PubMed  Google Scholar 

  56. Self M, Lagutin OV, Bowling B, Hendrix J, Cai Y, Dressler GR, Oliver G (2006) Six2 is required for suppression of nephrogenesis and progenitor renewal in the developing kidney. EMBO J 25:5214–5228

    CAS  PubMed  PubMed Central  Google Scholar 

  57. O’Brien LL, McMahon AP (2014) Induction and patterning of the metanephric nephron. Semin Cell Dev Biol 36:31–38

    PubMed  Google Scholar 

  58. El-Dahr SS, Li Y, Liu J, Gutierrez E, Hering-Smith KS, Signoretti S, Pignon JC, Sinha S, Saifudeen Z (2017) p63+ ureteric bud tip cells are progenitors of intercalated cells. JCI Insight 2:e89996

    PubMed Central  Google Scholar 

  59. Li Y, Liu J, Li W, Brown A, Baddoo M, Li M, Carroll T, Oxburgh L, Feng Y, Saifudeen Z (2015) p53 enables metabolic fitness and self-renewal of nephron progenitor cells. Development 142:1228–1241

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Brown AC, Muthukrishnan SD, Guay JA, Adams DC, Schafer DA, Fetting JL, Oxburgh L (2013) Role for compartmentalization in nephron progenitor differentiation. Proc Natl Acad Sci U S A 110:4640–4645

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Mao Y, Francis-West P, Irvine KD (2015) Fat4/Dchs1 signaling between stromal and cap mesenchyme cells influences nephrogenesis and ureteric bud branching. Development 142:2574–2585

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang H, Bagherie-Lachidan M, Badouel C, Enderle L, Peidis P, Bremner R, Kuure S, Jain S, McNeill H (2019) FAT4 fine-tunes kidney development by regulating RET signaling. Dev Cell 48:780–792 e4

    PubMed  PubMed Central  Google Scholar 

  63. Costantini F, Kopan R (2010) Patterning a complex organ: branching morphogenesis and nephron segmentation in kidney development. Dev Cell 18:698–712

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Brown AC, Muthukrishnan SD, Oxburgh L (2015) A synthetic niche for nephron progenitor cells. Dev Cell 34:229–241

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Liu J, Edgington-Giordano F, Dugas C, Abrams A, Katakam P, Satou R, Saifudeen Z (2017) Regulation of nephron progenitor cell self-renewal by intermediary metabolism. J Am Soc Nephrol 28:3323–3335

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Hilliard S, Song R, Liu H, Chen CH, Li Y, Baddoo M, Flemington E, Wanek A, Kolls J, Saifudeen Z, El-Dahr SS (2019) Defining the dynamic chromatin landscape of mouse nephron progenitors. Biol Open 8:bio042754

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Tortelote GG, Reis RR, de Almeida MF, Abreu JG (2017) Complexity of the Wnt/β-catenin pathway: searching for an activation model. Cell Signal 40:30–43

    CAS  PubMed  Google Scholar 

  68. Park JS, Ma W, O’Brien LL, Chung E, Guo JJ, Cheng JG, Valerius MT, McMahon JA, Wong WH, McMahon AP (2012) Six2 and Wnt regulate self-renewal and commitment of nephron progenitors through shared gene regulatory networks. Dev Cell 23:637–651

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Lindstrom NO, Carragher NO, Hohenstein P (2015) The PI3K pathway balances self-renewal and differentiation of nephron progenitor cells through beta-catenin signaling. Stem Cell Reports 4:551–560

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Dang CV, Kim JW, Gao P, Yustein J (2008) The interplay between MYC and HIF in cancer. Nat Rev Cancer 8:51–56

    CAS  PubMed  Google Scholar 

  71. Shim H, Dolde C, Lewis BC, Wu CS, Dang G, Jungmann RA, Dalla-Favera R, Dang CV (1997) c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc Natl Acad Sci U S A 94:6658–6663

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Goetzman ES, Prochownik EV (2018) The role for Myc in coordinating glycolysis, oxidative phosphorylation, glutaminolysis, and fatty acid metabolism in normal and neoplastic tissues. Front Endocrinol (Lausanne) 9:129

    Google Scholar 

  73. David CJ, Chen M, Assanah M, Canoll P, Manley JL (2010) HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature 463:364–368

    CAS  PubMed  Google Scholar 

  74. Yang W, Xia Y, Ji H, Zheng Y, Liang J, Huang W, Gao X, Aldape K, Lu Z (2011) Nuclear PKM2 regulates β-catenin transactivation upon EGFR activation. Nature 480:118–122

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Yang W, Zheng Y, Xia Y, Ji H, Chen X, Guo F, Lyssiotis CA, Aldape K, Cantley LC, Lu Z (2012) ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nat Cell Biol 14:1295–1304

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Cargill K, Hemker SL, Clugston A, Murali A, Mukherjee E, Liu J, Bushnell D, Bodnar AJ, Saifudeen Z, Ho J, Bates CM, Kostka D, Goetzman ES, Sims-Lucas S (2019) Von Hippel-Lindau acts as a metabolic switch controlling nephron progenitor differentiation. J Am Soc Nephrol 30:1192–1205

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Kobayashi H, Liu J, Urrutia AA, Burmakin M, Ishii K, Rajan M, Davidoff O, Saifudeen Z, Haase VH (2017) Hypoxia-inducible factor prolyl-4-hydroxylation in FOXD1 lineage cells is essential for normal kidney development. Kidney Int 92:1370–1383

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Chanet S, Martin AC (2014) Mechanical force sensing in tissues. Prog Mol Biol Transl Sci 126:317–352

    PubMed  PubMed Central  Google Scholar 

  79. Navis A, Nelson CM (2016) Pulling together: tissue-generated forces that drive lumen morphogenesis. Semin Cell Dev Biol 55:139–147

    PubMed  PubMed Central  Google Scholar 

  80. Ata R, Antonescu CN (2017) Integrins and cell metabolism: an intimate relationship impacting cancer. Int J Mol Sci 18:189

    PubMed Central  Google Scholar 

  81. Driscoll TP, Cosgrove BD, Heo SJ, Shurden ZE, Mauck RL (2015) Cytoskeletal to nuclear strain transfer regulates YAP signaling in mesenchymal stem cells. Biophys J 108:2783–2793

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Nishinakamura R (2019) Human kidney organoids: progress and remaining challenges. Nat Rev Nephrol 15:613–624

    PubMed  Google Scholar 

  83. Dorey ES, Pantaleon M, Weir KA, Moritz KM (2014) Adverse prenatal environment and kidney development: implications for programing of adult disease. Reproduction 147:R189–R198

    CAS  PubMed  Google Scholar 

  84. Lloyd LJ, Foster T, Rhodes P, Rhind SM, Gardner DS (2012) Protein-energy malnutrition during early gestation in sheep blunts fetal renal vascular and nephron development and compromises adult renal function. J Physiol 590:377–393

    CAS  PubMed  Google Scholar 

  85. Schreuder M, Delemarre-van de Waal H, van Wijk A (2006) Consequences of intrauterine growth restriction for the kidney. Kidney Blood Press Res 29:108–125

    CAS  PubMed  Google Scholar 

  86. Zohdi V, Sutherland MR, Lim K, Gubhaju L, Zimanyi MA, Black MJ (2012) Low birth weight due to intrauterine growth restriction and/or preterm birth: effects on nephron number and long-term renal health. Int J Nephrol 2012:136942–136942

    PubMed  PubMed Central  Google Scholar 

  87. Hokke SN, Armitage JA, Puelles VG, Short KM, Jones L, Smyth IM, Bertram JF, Cullen-McEwen LA (2013) Altered ureteric branching morphogenesis and nephron endowment in offspring of diabetic and insulin-treated pregnancy. PLoS One 8:e58243

    PubMed  PubMed Central  Google Scholar 

  88. Wilkinson LJ, Neal CS, Singh RR, Sparrow DB, Kurniawan ND, Ju A, Grieve SM, Dunwoodie SL, Moritz KM, Little MH (2015) Renal developmental defects resulting from in utero hypoxia are associated with suppression of ureteric β-catenin signaling. Kidney Int 87:975–983

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Samir El-Dahr for his critical reading of this review and suggestions.

Funding

Z. S. is funded by the NIH grant DK118231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zubaida Saifudeen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tortelote, G.G., Colón-Leyva, M. & Saifudeen, Z. Metabolic programming of nephron progenitor cell fate. Pediatr Nephrol 36, 2155–2164 (2021). https://doi.org/10.1007/s00467-020-04752-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-020-04752-8

Keywords

Navigation