Skip to main content

Advertisement

Log in

Neurophysiological control of urinary bladder storage and voiding—functional changes through development and pathology

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

The effective storage of urine and its expulsion relies upon the coordinated activity of parasympathetic, sympathetic, and somatic innervations to the lower urinary tract (LUT). At birth, all mammalian neonates lack the ability to voluntary regulate bladder storage or voiding. The ability to control urinary bladder activity is established as connections to the central nervous system (CNS) form through development. The neural regulation of the LUT has been predominantly investigated in adult animal models where comparatively less is known about the neonatal and postnatal neurophysiological development that facilitate urinary continence. Furthermore, congenital neurological or anatomical defects can adversely affect both storage and voiding functions through postnatal development and into adulthood, leading to secondary conditions including vesicoureteral reflux, chronic urinary tract infections, and end-stage renal disease. Therefore, the aim of the review is to provide the current knowledge available on neurophysiological regulation of the LUT through pre- to postnatal development of human and animal models and the consequences of congenital anomalies that can affect LUT neural function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Fowler CJ, Griffiths D, de Groat WC (2008) The neural control of micturition. Nat Rev Neurosci 9(6):453–466

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Deshpande AV (2018) Current strategies to predict and manage sequelae of posterior urethral valves in children. Pediatr Nephrol 33(10):1651–1661

    PubMed  Google Scholar 

  3. Rasouly HM, Lu W (2013) Lower urinary tract development and disease. Wiley Interdiscip Rev Syst Biol Med 5(3):307–342

    PubMed  PubMed Central  Google Scholar 

  4. Mendelsohn C (2009) Using mouse models to understand normal and abnormal urogenital tract development. Organogenesis 5(1):306–314

    PubMed  PubMed Central  Google Scholar 

  5. Yamany T, Van Batavia J, Mendelsohn C (2014) Formation and regeneration of the urothelium. Curr Opin Organ Transplant 19(3):323–330

    PubMed  Google Scholar 

  6. Walker KA, Sims-Lucas S, Bates CM (2016) Fibroblast growth factor receptor signaling in kidney and lower urinary tract development. Pediatr Nephrol 31(6):885–895

    PubMed  Google Scholar 

  7. van der Ven AT, Vivante A, Hildebrandt F (2018) Novel Insights into the Pathogenesis of Monogenic Congenital Anomalies of the Kidney and Urinary Tract. J Am Soc Nephrol 29(1):36–50

    PubMed  Google Scholar 

  8. Woolf AS, Lopes FM, Ranjzad P, Roberts NA (2019) Congenital Disorders of the Human Urinary Tract: Recent Insights From Genetic and Molecular Studies. Front Pediatr 7:136

    PubMed  PubMed Central  Google Scholar 

  9. Dail WG (1996) The pelvic plexus: innervation of pelvic and extrapelvic visceral tissues. Microsc Res Tech 35(2):95–106

    CAS  PubMed  Google Scholar 

  10. Imai K, Furuya K, Kawada M, Kinugasa Y, Omote K, Namiki A, Uchiyama E, Murakami G (2006) Human pelvic extramural ganglion cells: a semiquantitative and immunohistochemical study. Surg Radiol Anat 28(6):596–605

    PubMed  Google Scholar 

  11. Wiese CB, Deal KK, Ireland SJ, Cantrell VA, Southard-Smith EM (2017) Migration pathways of sacral neural crest during development of lower urogenital tract innervation. Dev Biol 429(1):356–369

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ritter KE, Southard-Smith EM (2016) Dynamic Expression of Serotonin Receptor 5-HT3A in Developing Sensory Innervation of the Lower Urinary Tract. Front Neurosci 10:592

    PubMed  Google Scholar 

  13. Ritter KE, Wang Z, Vezina CM, Bjorling DE, Southard-Smith EM (2017) Serotonin Receptor 5-HT3A Affects Development of Bladder Innervation and Urinary Bladder Function. Front Neurosci 11:690

    PubMed  PubMed Central  Google Scholar 

  14. Purves-Tyson TD, Arshi MS, Handelsman DJ, Cheng Y, Keast JR (2007) Androgen and estrogen receptor-mediated mechanisms of testosterone action in male rat pelvic autonomic ganglia. Neuroscience 148(1):92–104

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Papka RE, Storey-Workley M, Shughrue PJ, Merchenthaler I, Collins JJ, Usip S, Saunders PT, Shupnik M (2001) Estrogen receptor-alpha and beta- immunoreactivity and mRNA in neurons of sensory and autonomic ganglia and spinal cord. Cell Tissue Res 304(2):193–214

    CAS  PubMed  Google Scholar 

  16. Jen PY, Dixon JS, Gosling JA (1995) Immunohistochemical localization of neuromarkers and neuropeptides in human fetal and neonatal urinary bladder. Br J Urol 75(2):230–235

    CAS  PubMed  Google Scholar 

  17. Levin RM, Malkowicz SB, Jacobowitz D, Wein AJ (1981) The ontogeny of the autonomic innervation and contractile response of the rabbit urinary bladder. J Pharmacol Exp Ther 219(1):250–257

    CAS  PubMed  Google Scholar 

  18. Georgas KM, Armstrong J, Keast JR, Larkins CE, McHugh KM, Southard-Smith EM, Cohn MJ, Batourina E, Dan H, Schneider K, Buehler DP, Wiese CB, Brennan J, Davies JA, Harding SD, Baldock RA, Little MH, Vezina CM, Mendelsohn C (2015) An illustrated anatomical ontology of the developing mouse lower urogenital tract. Development 142(10):1893–1908

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Turco AE, Cadena MT, Zhang HL, Sandhu JK, Oakes SR, Chathurvedula T, Peterson RE, Keast JR, Vezina CM (2019) A temporal and spatial map of axons in developing mouse prostate. Histochem Cell Biol 152(1):35–45

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Takiguchi M, Atobe Y, Kadota T, Funakoshi K (2015) Compensatory projections of primary sensory fibers in lumbar spinal cord after neonatal thoracic spinal transection in rats. Neuroscience 304:349–354

    CAS  PubMed  Google Scholar 

  21. Guerra L, Leonard M, Castagnetti M (2014) Best practice in the assessment of bladder function in infants. Ther Adv Urol 6(4):148–164

    PubMed  PubMed Central  Google Scholar 

  22. Sillen U (2001) Bladder function in healthy neonates and its development during infancy. J Urol 166(6):2376–2381

    CAS  PubMed  Google Scholar 

  23. Zvarova K, Zvara P (2012) Urinary bladder function in conscious rat pups: a developmental study. Am J Physiol Renal Physiol 302(12):F1563–F1568

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Neveus T, Sillen U (2013) Lower urinary tract function in childhood; normal development and common functional disturbances. Acta Physiol (Oxf) 207(1):85–92

    CAS  Google Scholar 

  25. Drake MJ, Kanai A, Bijos DA, Ikeda Y, Zabbarova I, Vahabi B, Fry CH (2017) The potential role of unregulated autonomous bladder micromotions in urinary storage and voiding dysfunction; overactive bladder and detrusor underactivity. BJU Int 119(1):22–29

    PubMed  Google Scholar 

  26. Heppner TJ, Hennig GW, Nelson MT, Vizzard MA (2017) Rhythmic Calcium Events in the Lamina Propria Network of the Urinary Bladder of Rat Pups. Front Syst Neurosci 11:87

    PubMed  PubMed Central  Google Scholar 

  27. Ikeda Y, Fry C, Hayashi F, Stolz D, Griffiths D, Kanai A (2007) Role of gap junctions in spontaneous activity of the rat bladder. Am J Physiol Renal Physiol 293(4):F1018–F1025

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Fry CH, Young JS, Jabr RI, McCarthy C, Ikeda Y, Kanai AJ (2012) Modulation of spontaneous activity in the overactive bladder: the role of P2Y agonists. Am J Physiol Renal Physiol 302(11):F1447–F1454

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ng YK, de Groat WC, Wu HY (2006) Muscarinic regulation of neonatal rat bladder spontaneous contractions. Am J Physiol Regul Integr Comp Physiol 291(4):R1049–R1059

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Sugaya K, De Groat WC (1994) Micturition reflexes in the in vitro neonatal rat brain stem-spinal cord-bladder preparation. Am J Physiol 266(3 Pt 2):R658–R667

    CAS  PubMed  Google Scholar 

  31. McCarthy CJ, Zabbarova IV, Brumovsky PR, Roppolo JR, Gebhart GF, Kanai AJ (2009) Spontaneous contractions evoke afferent nerve firing in mouse bladders with detrusor overactivity. J Urol 181(3):1459–1466

    PubMed  PubMed Central  Google Scholar 

  32. de Groat WC, Griffiths D, Yoshimura N (2015) Neural control of the lower urinary tract. Compr Physiol 5(1):327–396

    PubMed  PubMed Central  Google Scholar 

  33. Roy HA, Green AL (2019) The Central Autonomic Network and Regulation of Bladder Function. Front Neurosci 13:535

    PubMed  PubMed Central  Google Scholar 

  34. Beckel JM, Holstege G (2011) Neurophysiology of the lower urinary tract. Handb Exp Pharmacol 202:149–169

    CAS  Google Scholar 

  35. Cheng F, Birder LA, Kullmann FA, Hornsby J, Watton PN, Watkins S, Thompson M, Robertson AM (2018) Layer-dependent role of collagen recruitment during loading of the rat bladder wall. Biomech Model Mechanobiol 17(2):403–417

    PubMed  Google Scholar 

  36. Lei Q, Pan XQ, Chang S, Malkowicz SB, Guzzo TJ, Malykhina AP (2014) Response of the human detrusor to stretch is regulated by TREK-1, a two-pore-domain (K2P) mechano-gated potassium channel. J Physiol 592(14):3013–3030

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Petkov GV (2014) Central role of the BK channel in urinary bladder smooth muscle physiology and pathophysiology. Am J Physiol Regul Integr Comp Physiol 307(6):R571–R584

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Gosling JA, Dixon JS, Jen PY (1999) The distribution of noradrenergic nerves in the human lower urinary tract. A review. Eur Urol 36(Suppl 1):23–30

    PubMed  Google Scholar 

  39. Persyn S, Eastham J, De Wachter S, Gillespie J (2016) Adrenergic signaling elements in the bladder wall of the adult rat. Auton Neurosci 201:40–48

    CAS  PubMed  Google Scholar 

  40. Igawa Y, Aizawa N, Michel MC (2019) beta3 -Adrenoceptors in the normal and diseased urinary bladder-What are the open questions? Br J Pharmacol 176(14):2525–2538

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Yoshimura N, Miyazato M (2012) Neurophysiology and therapeutic receptor targets for stress urinary incontinence. Int J Urol 19(6):524–537

    PubMed  Google Scholar 

  42. Persson K, Alm P, Uvelius B, Andersson KE (1998) Nitrergic and cholinergic innervation of the rat lower urinary tract after pelvic ganglionectomy. Am J Physiol 274(2):R389–R397

    CAS  PubMed  Google Scholar 

  43. Giglio D, Tobin G (2009) Muscarinic receptor subtypes in the lower urinary tract. Pharmacology 83(5):259–269

    CAS  PubMed  Google Scholar 

  44. Mitolo-Chieppa D, Schonauer S, Grasso G, Cicinelli E, Carratu MR (1983) Ontogenesis of autonomic receptors in detrusor muscle and bladder sphincter of human fetus. Urology 21(6):599–603

    CAS  PubMed  Google Scholar 

  45. Burnstock G (2014) Purinergic signalling in the urinary tract in health and disease. Purinergic Signal 10(1):103–155

    CAS  PubMed  Google Scholar 

  46. Ekman M, Andersson KE, Arner A (2006) Developmental regulation of nerve and receptor mediated contractions of mammalian urinary bladder smooth muscle. Eur J Pharmacol 532(1-2):99–106

    CAS  PubMed  Google Scholar 

  47. McCarthy CJ, Ikeda Y, Skennerton D, Chakrabarty B, Kanai AJ, Jabr RI, Fry CH (2019) Characterisation of nerve-mediated ATP release from detrusor muscle; pathological implications. Br J Pharmacol

  48. Johal N, Wood DN, Wagg AS, Cuckow P, Fry CH (2014) Functional properties and connective tissue content of pediatric human detrusor muscle. Am J Physiol Renal Physiol 307(9):F1072–F1079

    CAS  PubMed  Google Scholar 

  49. Mevorach RA, Bogaert GA, Kogan BA (1994) Role of nitric oxide in fetal lower urinary tract function. J Urol 152(2 Pt 1):510–514

    CAS  PubMed  Google Scholar 

  50. Dixon JS, Jen PY (1995) Development of nerves containing nitric oxide synthase in the human male urogenital organs. Br J Urol 76(6):719–725

    CAS  PubMed  Google Scholar 

  51. Persson K, Johansson K, Alm P, Larsson B, Andersson KE (1997) Morphological and functional evidence against a sensory and sympathetic origin of nitric oxide synthase-containing nerves in the rat lower urinary tract. Neuroscience 77(1):271–281

    CAS  PubMed  Google Scholar 

  52. de Groat WC, Yoshimura N (2010) Changes in afferent activity after spinal cord injury. Neurourol Urodyn 29(1):63–76

    PubMed  PubMed Central  Google Scholar 

  53. Xu L, Gebhart GF (2008) Characterization of mouse lumbar splanchnic and pelvic nerve urinary bladder mechanosensory afferents. J Neurophysiol 99(1):244–253

    PubMed  Google Scholar 

  54. Zhang Y, Li S, Yecies T, Morgan T, Cai H, Pace N, Shen B, Wang J, Roppolo JR, de Groat WC, Tai C (2019) Sympathetic afferents in the hypogastric nerve facilitate nociceptive bladder activity in cats. Am J Physiol Renal Physiol 316(4):F703–F711

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Birder L, Andersson KE (2013) Urothelial signaling. Physiol Rev 93(2):653–680

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kruse MN, De Groat WC (1990) Micturition reflexes in decerebrate and spinalized neonatal rats. Am J Physiol 258(6 Pt 2):R1508–R1511

    CAS  PubMed  Google Scholar 

  57. Payne SC, Belleville PJ, Keast JR (2015) Regeneration of sensory but not motor axons following visceral nerve injury. Exp Neurol 266:127–142

    PubMed  Google Scholar 

  58. de Groat WC, Yoshimura N (2012) Plasticity in reflex pathways to the lower urinary tract following spinal cord injury. Exp Neurol 235(1):123–132

    PubMed  Google Scholar 

  59. Frias B, Lopes T, Pinto R, Cruz F, Cruz CD (2011) Neurotrophins in the lower urinary tract: becoming of age. Curr Neuropharmacol 9(4):553–558

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Kawakami T, Wakabayashi Y, Isono T, Aimi Y, Okada Y (2002) Expression of neurotrophin messenger RNAs during rat urinary bladder development. Neurosci Lett 329(1):77–80

    CAS  PubMed  Google Scholar 

  61. Lommatzsch M, Quarcoo D, Schulte-Herbruggen O, Weber H, Virchow JC, Renz H, Braun A (2005) Neurotrophins in murine viscera: a dynamic pattern from birth to adulthood. Int J Dev Neurosci 23(6):495–500

    CAS  PubMed  Google Scholar 

  62. Girard B, Peterson A, Malley S, Vizzard MA (2016) Accelerated onset of the vesicovesical reflex in postnatal NGF-OE mice and the role of neuropeptides. Exp Neurol 285(Pt B):110–125

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Jahed A, Kawaja MD (2005) The influences of p75 neurotrophin receptor and brain-derived neurotrophic factor in the sympathetic innervation of target tissues during murine postnatal development. Auton Neurosci 118(1-2):32–42

    CAS  PubMed  Google Scholar 

  64. Stewart AL, Anderson RB, Kobayashi K, Young HM (2008) Effects of NGF, NT-3 and GDNF family members on neurite outgrowth and migration from pelvic ganglia from embryonic and newborn mice. BMC Dev Biol 8:73

    PubMed  PubMed Central  Google Scholar 

  65. Danziger ZC, Grill WM (2017) Sensory feedback from the urethra evokes state-dependent lower urinary tract reflexes in rat. J Physiol 595(16):5687–5698

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Deckmann K, Kummer W (2016) Chemosensory epithelial cells in the urethra: sentinels of the urinary tract. Histochem Cell Biol 146(6):673–683

    CAS  PubMed  Google Scholar 

  67. Deckmann K, Filipski K, Krasteva-Christ G, Fronius M, Althaus M, Rafiq A, Papadakis T, Renno L, Jurastow I, Wessels L, Wolff M, Schutz B, Weihe E, Chubanov V, Gudermann T, Klein J, Bschleipfer T, Kummer W (2014) Bitter triggers acetylcholine release from polymodal urethral chemosensory cells and bladder reflexes. Proc Natl Acad Sci U S A 111(22):8287–8292

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Kullmann FA, Chang HH, Gauthier C, McDonnell BM, Yeh JC, Clayton DR, Kanai AJ, de Groat WC, Apodaca GL, Birder LA (2018) Serotonergic paraneurones in the female mouse urethral epithelium and their potential role in peripheral sensory information processing. Acta Physiol (Oxf):222(2)

  69. Yalla SV, Resnick NM (1997) Initiation of voiding in humans: the nature and temporal relationship of urethral sphincter responses. J Urol 157(2):590–595

    CAS  PubMed  Google Scholar 

  70. Valentino RJ, Guyenet P, Hou XH, Herman M (2017) Central Network Dynamics Regulating Visceral and Humoral Functions. J Neurosci 37(45):10848–10854

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Zare A, Jahanshahi A, Rahnama'i MS, Schipper S, van Koeveringe GA (2019) The Role of the Periaqueductal Gray Matter in Lower Urinary Tract Function. Mol Neurobiol 56(2):920–934

    CAS  PubMed  Google Scholar 

  72. Deruyver Y, Rietjens R, Franken J, Pinto S, Van Santvoort A, Casteels C, Voets T, De Ridder D (2015) (18F)FDG-PET brain imaging during the micturition cycle in rats detects regions involved in bladder afferent signalling. EJNMMI Res 5(1):55

    PubMed  PubMed Central  Google Scholar 

  73. Zare A, Schipper S, Stein W, Temel Y, van Koeveringe GA, Jahanshahi A (2018) Electrophysiological responses of the ventrolateral periaqueductal gray matter neurons towards peripheral bladder stimulation. Brain Res Bull 142:116–121

    PubMed  Google Scholar 

  74. Zare A, Jahanshahi A, Meriaux C, Steinbusch HW, van Koeveringe GA (2018) Glutamatergic cells in the periaqueductal gray matter mediate sensory inputs after bladder stimulation in freely moving rats. Int J Urol 25(6):621–626

    CAS  PubMed  Google Scholar 

  75. Hou XH, Hyun M, Taranda J, Huang KW, Todd E, Feng D, Atwater E, Croney D, Zeidel ML, Osten P, Sabatini BL (2016) Central Control Circuit for Context-Dependent Micturition. Cell 167(1):73–86 e12

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Hornsby J, Daly DM, Grundy D, Cheng F, Robertson AM, Watton PN, Thompson MS (2017) Quantitative multiphoton microscopy of murine urinary bladder morphology during in situ uniaxial loading. Acta Biomater 64:59–66

    PubMed  Google Scholar 

  77. Keller JA, Chen J, Simpson S, Wang EH, Lilascharoen V, George O, Lim BK, Stowers L (2018) Voluntary urination control by brainstem neurons that relax the urethral sphincter. Nat Neurosci 21(9):1229–1238

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Verstegen AMJ, Klymko N, Zhu L, Mathai JC, Kobayashi R, Venner A, Ross RA, VanderHorst VG, Arrigoni E, Geerling JC, Zeidel ML (2019) Non-Crh Glutamatergic Neurons in Barrington's Nucleus Control Micturition via Glutamatergic Afferents from the Midbrain and Hypothalamus. Curr Biol 29(17):2775–2789 e7

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Semple BD, Blomgren K, Gimlin K, Ferriero DM, Noble-Haeusslein LJ (2013) Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species. Prog Neurobiol 106-107:1–16

    PubMed  Google Scholar 

  80. Uvin P, Everaerts W, Pinto S, Alpizar YA, Boudes M, Gevaert T, Voets T, Nilius B, Talavera K, De Ridder D (2012) The use of cystometry in small rodents: a study of bladder chemosensation. J Vis Exp 66:e3869

    Google Scholar 

  81. Sapru HN, Krieger AJ (1978) Procedure for the decerebration of the rat. Brain Res Bull 3(6):675–679

    CAS  PubMed  Google Scholar 

  82. Yoshiyama M, Roppolo JR, de Groat WC (1993) Effects of MK-801 on the micturition reflex in the rat--possible sites of action. J Pharmacol Exp Ther 265(2):844–850

    CAS  PubMed  Google Scholar 

  83. Yaksh TL, Durant PA, Brent CR (1986) Micturition in rats: a chronic model for study of bladder function and effect of anesthetics. Am J Physiol 251(6 Pt 2):R1177–R1185

    CAS  PubMed  Google Scholar 

  84. Kim AK, Hill WG (2017) Effect of filling rate on cystometric parameters in young and middle aged mice. Bladder (San Franc) 4(1)

  85. Li WJ, Kim JM, Oh SJ (2011) Effects of level of consciousness on urodynamic procedure in female cats. J Korean Med Sci 26(6):803–806

    PubMed  PubMed Central  Google Scholar 

  86. Lai H, Gardner V, Vetter J, Andriole GL (2015) Correlation between psychological stress levels and the severity of overactive bladder symptoms. BMC Urol 15:14

    PubMed  PubMed Central  Google Scholar 

  87. Hill WG, Zeidel ML, Bjorling DE, Vezina CM (2018) Void spot assay: recommendations on the use of a simple micturition assay for mice. Am J Physiol Renal Physiol 315(5):F1422–F1429

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Verstegen AM, Tish MM, Szczepanik LP, Zeidel ML, Geerling JC (2020) Micturition video thermography in awake, behaving mice. J Neurosci Methods 331:108449

    PubMed  Google Scholar 

  89. Yao J, Li Q, Li X, Qin H, Liang S, Liao X, Chen X, Li W, Yan J (2019) Simultaneous Measurement of Neuronal Activity in the Pontine Micturition Center and Cystometry in Freely Moving Mice. Front Neurosci 13:663

    PubMed  PubMed Central  Google Scholar 

  90. Andersson KE, Soler R, Fullhase C (2011) Rodent models for urodynamic investigation. Neurourol Urodyn 30(5):636–646

    PubMed  Google Scholar 

  91. Capone VP, Morello W, Taroni F, Montini G (2017) Genetics of Congenital Anomalies of the Kidney and Urinary Tract: The Current State of Play. Int J Mol Sci:18(4)

  92. Davis TK, Hoshi M, Jain S (2014) To bud or not to bud: the RET perspective in CAKUT. Pediatr Nephrol 29(4):597–608

    PubMed  PubMed Central  Google Scholar 

  93. Haraguchi R, Motoyama J, Sasaki H, Satoh Y, Miyagawa S, Nakagata N, Moon A, Yamada G (2007) Molecular analysis of coordinated bladder and urogenital organ formation by Hedgehog signaling. Development 134(3):525–533

    CAS  PubMed  Google Scholar 

  94. Niimura F, Kon V, Ichikawa I (2006) The renin-angiotensin system in the development of the congenital anomalies of the kidney and urinary tract. Curr Opin Pediatr 18(2):161–166

    PubMed  Google Scholar 

  95. Wang Y, Zhou CJ, Liu Y (2018) Wnt Signaling in Kidney Development and Disease. Prog Mol Biol Transl Sci 153:181–207

    CAS  PubMed  Google Scholar 

  96. Marrone AK, Ho J (2014) MicroRNAs: potential regulators of renal development genes that contribute to CAKUT. Pediatr Nephrol 29(4):565–574

    PubMed  Google Scholar 

  97. Moreno-De-Luca D, Consortium S, Mulle JG, Kaminsky EB, Sanders SJ, GeneStar SMM, Adam MP, Pakula AT, Eisenhauer NJ, Uhas K, Weik L, Guy L, Care ME, Morel CF, Boni C, Salbert BA, Chandrareddy A, Demmer LA, Chow EW, Surti U, Aradhya S, Pickering DL, Golden DM, Sanger WG, Aston E, Brothman AR, Gliem TJ, Thorland EC, Ackley T, Iyer R, Huang S, Barber JC, Crolla JA, Warren ST, Martin CL, Ledbetter DH, C. Simons Simplex Collection Genetics (2010) Deletion 17q12 is a recurrent copy number variant that confers high risk of autism and schizophrenia. Am J Hum Genet 87(5):618–630

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Clissold RL, Shaw-Smith C, Turnpenny P, Bunce B, Bockenhauer D, Kerecuk L, Waller S, Bowman P, Ford T, Ellard S, Hattersley AT, Bingham C (2016) Chromosome 17q12 microdeletions but not intragenic HNF1B mutations link developmental kidney disease and psychiatric disorder. Kidney Int 90(1):203–211

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Jain S, Chen F (2019) Developmental pathology of congenital kidney and urinary tract anomalies. Clin Kidney J 12(3):382–399

    CAS  PubMed  Google Scholar 

  100. Fusco F, Creta M, De Nunzio C, Iacovelli V, Mangiapia F, Li Marzi V, Finazzi Agro E (2018) Progressive bladder remodeling due to bladder outlet obstruction: a systematic review of morphological and molecular evidences in humans. BMC Urol 18(1):15

    PubMed  PubMed Central  Google Scholar 

  101. Nyirady P, Thiruchelvam N, Fry CH, Godley ML, Winyard PJ, Peebles DM, Woolf AS, Cuckow PM (2002) Effects of in utero bladder outflow obstruction on fetal sheep detrusor contractility, compliance and innervation. J Urol 168(4 Pt 1):1615–1620

    PubMed  Google Scholar 

  102. Thomas J (2010) Etiopathogenesis and management of bladder dysfunction in patients with posterior urethral valves. Indian J Urol 26(4):480–489

    PubMed  PubMed Central  Google Scholar 

  103. Levin RM, Macarak E, Howard P, Horan P, Kogan BA (2001) The response of fetal sheep bladder tissue to partial outlet obstruction. J Urol 166(3):1156–1160

    CAS  PubMed  Google Scholar 

  104. Hughes FM Jr, Sexton SJ, Ledig PD, Yun CE, Jin H, Purves JT (2019) Bladder decompensation and reduction in nerve density in a rat model of chronic bladder outlet obstruction are attenuated with the NLRP3 inhibitor glyburide. Am J Physiol Renal Physiol 316(1):F113–F120

    CAS  PubMed  Google Scholar 

  105. Andersson KE, Boedtkjer DB, Forman A (2017) The link between vascular dysfunction, bladder ischemia, and aging bladder dysfunction. Ther Adv Urol 9(1):11–27

    CAS  PubMed  Google Scholar 

  106. Valerio E, Vanzo V, Zaramella P, Salvadori S, Castagnetti M, Baraldi E (2015) Exstrophy-Epispadias Complex in a Newborn: Case Report and Review of the Literature. AJP Rep 5(2):e183–e187

    PubMed  PubMed Central  Google Scholar 

  107. Mathews R, Wills M, Perlman E, Gearhart JP (1999) Neural innervation of the newborn exstrophic bladder: an immunohistochemical study. J Urol 162(2):506–508

    CAS  PubMed  Google Scholar 

  108. Johal NS, Arthurs C, Cuckow P, Cao K, Wood DN, Ahmed A, Fry CH (2019) Functional, histological and molecular characteristics of human exstrophy detrusor. J Pediatr Urol 15(2):154 e1–154 e9

    Google Scholar 

  109. Kullmann FA, Clayton DR, Ruiz WG, Wolf-Johnston A, Gauthier C, Kanai A, Birder LA, Apodaca G (2017) Urothelial proliferation and regeneration after spinal cord injury. Am J Physiol Renal Physiol 313(1):F85–F102

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Korzeniecka-Kozerska A, Porowski T, Michaluk-Skutnik J, Wasilewska A, Plonski G (2013) Urinary nerve growth factor level in children with neurogenic bladder due to myelomeningocele. Scand J Urol 47(5):411–417

    CAS  PubMed  Google Scholar 

  111. Roberts NA, Hilton EN, Lopes FM, Singh S, Randles MJ, Gardiner NJ, Chopra K, Coletta R, Bajwa Z, Hall RJ, Yue WW, Schaefer F, Weber S, Henriksson R, Stuart HM, Hedman H, Newman WG, Woolf AS (2019) Lrig2 and Hpse2, mutated in urofacial syndrome, pattern nerves in the urinary bladder. Kidney Int 95(5):1138–1152

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Casella DP, Tomaszewski JJ, Ost MC (2012) Posterior urethral valves: renal failure and prenatal treatment. Int J Nephrol 2012:351067

    PubMed  Google Scholar 

Download references

Funding

This work was funded by a Department of Defense grant (W81XWH1810436) to A.Kanai and Y.Ikeda.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youko Ikeda.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikeda, Y. Neurophysiological control of urinary bladder storage and voiding—functional changes through development and pathology. Pediatr Nephrol 36, 1041–1052 (2021). https://doi.org/10.1007/s00467-020-04594-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-020-04594-4

Keywords

Navigation