Skip to main content

Advertisement

Log in

Sex effects in pyelonephritis

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Urinary tract infections (UTIs) are generally considered a disease of women. However, UTIs affect females throughout the lifespan, and certain male populations (including infants and elderly men) are also susceptible. Epidemiologically, pyelonephritis is more common in women but carries increased morbidity when it does occur in men. Among children, high-grade vesicoureteral reflux is a primary risk factor for upper-tract UTI in both sexes. However, among young infants with UTI, girls are outnumbered by boys; risk factors include posterior urethral valves and lack of circumcision. Recent advances in mouse models of UTI reveal sex differences in innate responses to UTI, which vary somewhat depending on the system used. Moreover, male mice and androgenized female mice suffer worse outcomes in experimental pyelonephritis; evidence suggests that androgen exposure may suppress innate control of infection in the urinary tract, but additional androgen effects, as well as non-hormonal sex effects, may yet be specified. Among other intriguing directions, recent experiments raise the hypothesis that the postnatal testosterone surge that occurs in male infants may represent an additional factor driving the higher incidence of UTI in males under 6 months of age. Ongoing work in contemporary models will further illuminate sex- and sex-hormone-specific effects on UTI pathogenesis and immune responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Box 1

Similar content being viewed by others

References

  1. Foxman B (2003) Epidemiology of urinary tract infections: incidence, morbidity, and economic costs. Dis Mon 49:53–70

    PubMed  Google Scholar 

  2. Harding GKM, Ronald AR (1994) The management of urinary infections - what have we learned in the past decade. Int J Antimicrob Agents 4:83–88

    CAS  PubMed  Google Scholar 

  3. Foxman B (2014) Urinary tract infection syndromes: occurrence, recurrence, bacteriology, risk factors, and disease burden. Infect Dis Clin N Am 28:1–13

    Google Scholar 

  4. Larcombe J (2015) Urinary tract infection in children: recurrent infections. BMJ. Clin Evid 2015

  5. Wiswell TE, Hachey WE (1993) Urinary tract infections and the uncircumcised state: an update. Clin Pediatr 32:130–134

    CAS  Google Scholar 

  6. To T, Agha M, Dick PT, Feldman W (1998) Cohort study on circumcision of newborn boys and subsequent risk of urinary-tract infection. Lancet 352:1813–1816

    PubMed  Google Scholar 

  7. Wiswell TE, Smith FR, Bass JW (1985) Decreased incidence of urinary tract infections in circumcised male infants. Pediatrics 75:901–903

    CAS  PubMed  Google Scholar 

  8. Habib S (2012) Highlights for management of a child with a urinary tract infection. Int J Pediatr 2012:943653

    PubMed  PubMed Central  Google Scholar 

  9. Shaikh N, Mattoo TK, Keren R, Ivanova A, Cui G, Moxey-Mims M, Majd M, Ziessman HA, Hoberman A (2016) Early antibiotic treatment for pediatric febrile urinary tract infection and renal scarring. JAMA Pediatr 170:848–854

    PubMed  Google Scholar 

  10. Subcommittee on Urinary Tract Infection, Steering Committee on Quality Improvement and Management, Roberts KB (2011) Urinary tract infection: clinical practice guideline for the diagnosis and management of the initial UTI in febrile infants and children 2 to 24 months. Pediatrics 128:595–610

    Google Scholar 

  11. Helfand BT, Andreev VP, Siddiqui NY, Liu G, Erickson BA, Helmuth ME, Lutgendorf SK, Lai HH, Kirkali Z, LURN Study Group (2019) A novel proteomics approach to identify serum and urinary biomarkers and pathways that associate with lower urinary tract symptoms in men and women: pilot results of the symptoms of lower urinary tract dysfunction research network (LURN) study. Urology 129:35–42

    PubMed  Google Scholar 

  12. Shaikh N, Martin JM, Hoberman A, Skae M, Milkovich L, Nowalk A, McElheny C, Hickey RW, Kearney D, Majd M, Shalaby-Rana E, Tseng G, Alcorn JF, Kolls J, Kurs-Lasky M, Huo Z, Horne W, Lockhart G, Pohl H, Shope TR (2019) Host and bacterial markers that differ in children with cystitis and pyelonephritis. J Pediatr 209(146–153):e141

    Google Scholar 

  13. Expert Panel on Urologic Imaging, Nikolaidis P, Dogra VS, Goldfarb S, Gore JL, Harvin HJ, Heilbrun ME, Heller MT, Khatri G, Purysko AS, Savage SJ, Smith AD, Taffel MT, Wang ZJ, Wolfman DJ, Wong-You-Cheong JJ, Yoo DC, Lockhart ME (2018) ACR appropriateness criteria® acute pyelonephritis. J Am Coll Radiol 15:S232–S239

    Google Scholar 

  14. Thurman J, Gueler F (2018) Recent advances in renal imaging. F1000Res 7. https://doi.org/10.12688/f1000research.16188.1

  15. Freeman CW, Altes TA, Rehm PK, de Lange EE, Lancaster L, Mugler JP 3rd, Patrie JT, Corbett S, Leiva-Salinas C, Flors L (2018) Unenhanced MRI as an alternative to 99mTc-labeled dimercaptosuccinic acid scintigraphy in the detection of pediatric renal scarring. Am J Roentgenol 210:869–875

    Google Scholar 

  16. Dharmalingam A, Pawar SU, Parelkar SV, Shetye SS, Ghorpade MK, Tilve GH (2017) Tc-99m Ethylenedicysteine and Tc-99m dimercaptosuccinic acid scintigraphy: comparison of the two for detection of scarring and differential cortical function. Indian J Nucl Med 32:93–97

    PubMed  PubMed Central  Google Scholar 

  17. Kusmierek J, Pietrzak-Stelmasiak E, Bienkiewicz M, Woznicki W, Surma M, Frieske I, Plachcinska A (2015) Diagnostic efficacy of parametric clearance images in detection of renal scars in children with recurrent urinary tract infections. Ann Nucl Med 29:313–318

    PubMed  Google Scholar 

  18. Kim GE, Park JH, Kim JS, Won KS, Kim HW (2019) Comparison of Tc-99m DMSA renal planar scan and SPECT for detection of cortical defects in infants with suspected acute pyelonephritis. Indian J Pediatr 86:797–802

    PubMed  Google Scholar 

  19. Bailey RR, Lynn KL, Robson RA, Smith AH, Maling TM, Turner JG (1996) DMSA renal scans in adults with acute pyelonephritis. Clin Nephrol 46:99–104

    CAS  PubMed  Google Scholar 

  20. Rushton HG, Majd M, Chandra R, Yim D (1988) Evaluation of 99mtechnetium-dimercapto-succinic acid renal scans in experimental acute pyelonephritis in piglets. J Urol 140:1169–1174

    CAS  PubMed  Google Scholar 

  21. Majd M, Rushton HG, Chandra R, Andrich MP, Tardif CP, Rashti F (1996) Technetium-99m-DMSA renal cortical scintigraphy to detect experimental acute pyelonephritis in piglets: comparison of planar (pinhole) and SPECT imaging. J Nucl Med 37:1731–1734

    CAS  PubMed  Google Scholar 

  22. Kocyigit A, Yuksel S, Bayram R, Yilmaz I, Karabulut N (2014) Efficacy of magnetic resonance urography in detecting renal scars in children with vesicoureteral reflux. Pediatr Nephrol 29:1215–1220

    PubMed  Google Scholar 

  23. Becknell B, Spencer JD, Carpenter AR, Chen X, Singh A, Ploeger S, Kline J, Ellsworth P, Li B, Proksch E, Schwaderer AL, Hains DS, Justice SS, McHugh KM (2013) Expression and antimicrobial function of beta-defensin 1 in the lower urinary tract. PLoS One 8:e77714

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Eichler T, Bender K, Murtha MJ, Schwartz L, Metheny J, Solden L, Jaggers RM, Bailey MT, Gupta S, Mosquera C, Ching C, La Perle K, Li B, Becknell B, Spencer JD (2019) Ribonuclease 7 shields the kidney and bladder from invasive uropathogenic Escherichia coli infection. J Am Soc Nephrol 30:1385–1397

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Saxena V, Hains DS, Ketz J, Chanley M, Spencer JD, Becknell B, Pierce KR, Nelson RD, Purkerson JM, Schwartz GJ, Schwaderer AL (2018) Cell-specific qRT-PCR of renal epithelial cells reveals a novel innate immune signature in murine collecting duct. Am J Physiol Renal Physiol 315:F812–F823

    CAS  PubMed  Google Scholar 

  26. Ching CB, Gupta S, Li B, Cortado H, Mayne N, Jackson AR, McHugh KM, Becknell B (2018) Interleukin-6/Stat3 signaling has an essential role in the host antimicrobial response to urinary tract infection. Kidney Int 93:1320–1329

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Spencer JD, Schwaderer AL, Becknell B, Watson J, Hains DS (2014) The innate immune response during urinary tract infection and pyelonephritis. Pediatr Nephrol 29:1139–1149

    PubMed  Google Scholar 

  28. Hawn TR, Scholes D, Li SS, Wang H, Yang Y, Roberts PL, Stapleton AE, Janer M, Aderem A, Stamm WE, Zhao LP, Hooton TM (2009) Toll-like receptor polymorphisms and susceptibility to urinary tract infections in adult women. PLoS One 4:e5990

    PubMed  PubMed Central  Google Scholar 

  29. Ragnarsdottir B, Lutay N, Gronberg-Hernandez J, Koves B, Svanborg C (2011) Genetics of innate immunity and UTI susceptibility. Nat Rev Urol 8:449–468

    PubMed  Google Scholar 

  30. Puthia M, Ambite I, Cafaro C, Butler D, Huang Y, Lutay N, Rydstrom G, Gullstrand B, Swaminathan B, Nadeem A, Nilsson B, Svanborg C (2016) IRF7 inhibition prevents destructive innate immunity: a target for nonantibiotic therapy of bacterial infections. Sci Transl Med 8:336ra359

    Google Scholar 

  31. Garcia-Roig ML, Kirsch AJ (2016) Urinary tract infection in the setting of vesicoureteral reflux, F1000Res 5. https://doi.org/10.12688/f1000research.8390.1

  32. Hiraoka M, Hori C, Tsukahara H, Kasuga K, Ishihara Y, Kotsuji F, Mayumi M (1999) Vesicoureteral reflux in male and female neonates as detected by voiding ultrasonography. Kidney Int 55:1486–1490

    CAS  PubMed  Google Scholar 

  33. Nino F, Ilari M, Noviello C, Santoro L, Ratsch IM, Martino A, Cobellis G (2016) Genetics of vesicoureteral reflux. Curr Genomics 17:70–79

    CAS  PubMed  Google Scholar 

  34. Puri P, Gosemann JH, Darlow J, Barton DE (2011) Genetics of vesicoureteral reflux. Nat Rev Urol 8:539–552

    CAS  PubMed  Google Scholar 

  35. Carvas F, Silva A, Nguyen HT (2010) The genetics of primary, nonsyndromic vesicoureteral reflux. Curr Opin Urol 20:336–342

    PubMed  Google Scholar 

  36. O'Brien VP, Hannan TJ, Schaeffer AJ, Hultgren SJ (2015) Are you experienced? Understanding bladder innate immunity in the context of recurrent urinary tract infection. Curr Opin Infect Dis 28:97–105

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Bundovska-Kocev S, Kuzmanovska D, Selim G, Georgievska-Ismail L (2019) Predictors of renal dysfunction in adults with childhood vesicoureteral reflux after long-term follow-up. Open Access Maced J Med Sci 7:107–113

    PubMed  PubMed Central  Google Scholar 

  38. Schwaderer AL, Wang H, Kim S, Kline JM, Liang D, Brophy PD, McHugh KM, Tseng GC, Saxena V, Barr-Beare E, Pierce KR, Shaikh N, Manak JR, Cohen DM, Becknell B, Spencer JD, Baker PB, Yu CY, Hains DS (2016) Polymorphisms in α-defensin-encoding DEFA1A3 associate with urinary tract infection risk in children with vesicoureteral reflux. J Am Soc Nephrol 27:3175–3186

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kordi Tamandani DM, Naeimi N, Ghasemi A, Baranzahi T, Sadeghi-Bojd S (2016) Analysis of the IL-10, IL-12, and TNF-α gene polymorphisms in patients with vesicoureteral reflux among the southeast Iranian population. Nephrourol Mon 8:e34061

    PubMed  PubMed Central  Google Scholar 

  40. Krishnan A, de Souza A, Konijeti R, Baskin LS (2006) The anatomy and embryology of posterior urethral valves. J Urol 175:1214–1220

    PubMed  Google Scholar 

  41. Herbst KW, Tomlinson P, Lockwood G, Mosha MH, Wang Z, D'Alessandri-Silva C (2019) Survival and kidney outcomes of children with an early diagnosis of posterior urethral valves. Clin J Am Soc Nephrol 14:1572–1580

    PubMed  PubMed Central  Google Scholar 

  42. Ezel Celakil M, Ekinci Z, Bozkaya Yucel B, Mutlu N, Gunlemez A, Bek K (2019) Outcome of posterior urethral valve in 64 children: a single center's 22-year experience. Minerva Urol Nefrol 71:651–656

    PubMed  Google Scholar 

  43. Vieira ÉLM, Pessoa Rocha N, Macedo Bastos F, da Silveira KD, Pereira AK, Araujo Oliveira E, Marques de Miranda D, Simões E, Silva AC (2017) Posterior urethral valve in fetuses: evidence for the role of inflammatory molecules. Pediatr Nephrol 32:1391–1400

    PubMed  Google Scholar 

  44. Fink AL, Klein SL (2018) The evolution of greater humoral immunity in females than males: implications for vaccine efficacy. Curr Opin Physiol 6:16–20

    PubMed  PubMed Central  Google Scholar 

  45. Dombrovskiy VY, Martin AA, Sunderram J, Paz HL (2007) Rapid increase in hospitalization and mortality rates for severe sepsis in the United States: a trend analysis from 1993 to 2003. Crit Care Med 35:1244–1250

    PubMed  Google Scholar 

  46. Offner PJ, Moore EE, Biffl WL (1999) Male gender is a risk factor for major infections after surgery. Arch Surg 134:935–938

    CAS  PubMed  Google Scholar 

  47. Whitacre CC (2001) Sex differences in autoimmune disease. Nat Immunol 2:777–780

    CAS  PubMed  Google Scholar 

  48. Nachtigall I, Tafelski S, Rothbart A, Kaufner L, Schmidt M, Tamarkin A, Kartachov M, Zebedies D, Trefzer T, Wernecke KD, Spies C (2011) Gender-related outcome difference is related to course of sepsis on mixed ICUs: a prospective, observational clinical study. Crit Care 15:R151

    PubMed  PubMed Central  Google Scholar 

  49. Klein SL, Schiebinger L, Stefanick ML, Cahill L, Danska J, de Vries GJ, Kibbe MR, McCarthy MM, Mogil JS, Woodruff TK, Zucker I (2015) Opinion: sex inclusion in basic research drives discovery. Proc Natl Acad Sci U S A 112:5257–5258

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Traish A, Bolanos J, Nair S, Saad F, Morgentaler A (2018) Do androgens modulate the pathophysiological pathways of inflammation? Appraising the contemporary evidence. J Clin Med 7. https://doi.org/10.3390/jcm7120549

  51. Scotland RS, Stables MJ, Madalli S, Watson P, Gilroy DW (2011) Sex differences in resident immune cell phenotype underlie more efficient acute inflammatory responses in female mice. Blood 118:5918–5927

    CAS  PubMed  Google Scholar 

  52. Rettew JA, Huet-Hudson YM, Marriott I (2008) Testosterone reduces macrophage expression in the mouse of toll-like receptor 4, a trigger for inflammation and innate immunity. Biol Reprod 78:432–437

    CAS  PubMed  Google Scholar 

  53. D'Agostino P, Milano S, Barbera C, Di Bella G, La Rosa M, Ferlazzo V, Farruggio R, Miceli DM, Miele M, Castagnetta L, Cillari E (1999) Sex hormones modulate inflammatory mediators produced by macrophages. Ann N Y Acad Sci 876:426–429

    CAS  PubMed  Google Scholar 

  54. Huang CK, Pang H, Wang L, Niu Y, Luo J, Chang E, Sparks JD, Lee SO, Chang C (2014) New therapy via targeting androgen receptor in monocytes/macrophages to battle atherosclerosis. Hypertension 63:1345–1353

    CAS  PubMed  Google Scholar 

  55. Beenakker KGM, Westendorp RGJ, de Craen AJM, Chen S, Raz Y, Ballieux B, Nelissen R, Later AFL, Huizinga TW, Slagboom PE, Boomsma DI, Maier AB (2019) Men have a stronger monocyte-derived cytokine production response upon stimulation with the gram-negative stimulus lipopolysaccharide than women: a pooled analysis including 15 study populations. J Innate Immun 21:1–12. https://doi.org/10.1159/000499840

  56. Humphreys BD (2018) Mechanisms of renal fibrosis. Annu Rev Physiol 80:309–326

    CAS  PubMed  Google Scholar 

  57. Schiwon M, Weisheit C, Franken L, Gutweiler S, Dixit A, Meyer-Schwesinger C, Pohl JM, Maurice NJ, Thiebes S, Lorenz K, Quast T, Fuhrmann M, Baumgarten G, Lohse MJ, Opdenakker G, Bernhagen J, Bucala R, Panzer U, Kolanus W, Grone HJ, Garbi N, Kastenmuller W, Knolle PA, Kurts C, Engel DR (2014) Crosstalk between sentinel and helper macrophages permits neutrophil migration into infected uroepithelium. Cell 156:456–468

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Luthje P, Hirschberg AL, Brauner A (2014) Estrogenic action on innate defense mechanisms in the urinary tract. Maturitas 77:32–36

    CAS  PubMed  Google Scholar 

  59. Kouokam JC, Wai SN, Fallman M, Dobrindt U, Hacker J, Uhlin BE (2006) Active cytotoxic necrotizing factor 1 associated with outer membrane vesicles from uropathogenic Escherichia coli. Infect Immun 74:2022–2030

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Martinez JJ, Mulvey MA, Schilling JD, Pinkner JS, Hultgren SJ (2000) Type 1 pilus-mediated bacterial invasion of bladder epithelial cells. EMBO J 19:2803–2812

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Roberts JA, Marklund BI, Ilver D, Haslam D, Kaack MB, Baskin G, Louis M, Mollby R, Winberg J, Normark S (1994) The gal(α1-4)gal-specific tip adhesin of Escherichia coli P-fimbriae is needed for pyelonephritis to occur in the normal urinary tract. Proc Natl Acad Sci U S A 91:11889–11893

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Dhakal BK, Mulvey MA (2012) The UPEC pore-forming toxin α-hemolysin triggers proteolysis of host proteins to disrupt cell adhesion, inflammatory, and survival pathways. Cell Host Microbe 11:58–69

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Boehm BJ, Colopy SA, Jerde TJ, Loftus CJ, Bushman W (2012) Acute bacterial inflammation of the mouse prostate. Prostate 72:307–317

    CAS  PubMed  Google Scholar 

  64. Rudick CN, Berry RE, Johnson JR, Johnston B, Klumpp DJ, Schaeffer AJ, Thumbikat P (2011) Uropathogenic Escherichia coli induces chronic pelvic pain. Infect Immun 79:628–635

    CAS  PubMed  Google Scholar 

  65. Ginkel PD, Soper DE, Bump RC, Dalton HP (1993) Vaginal flora in postmenopausal women: the effect of estrogen replacement. Infect Dis Obstet Gynecol 1:94–97

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Olson PD, Hruska KA, Hunstad DA (2016) Androgens enhance male urinary tract infection severity in a new model. J Am Soc Nephrol 27:1625–1634

    CAS  PubMed  Google Scholar 

  67. Zychlinsky Scharff A, Albert ML, Ingersoll MA (2017) Urinary tract infection in a small animal model: transurethral catheterization of male and female mice. J Vis Exp. https://doi.org/10.3791/54432

  68. Zychlinsky Scharff A, Rousseau M, Lacerda Mariano L, Canton T, Consiglio CR, Albert ML, Fontes M, Duffy D, Ingersoll MA (2019) Sex differences in IL-17 contribute to chronicity in male versus female urinary tract infection. JCI Insight. https://doi.org/10.1172/jci.insight.122998

  69. Luthje P, Brauner H, Ramos NL, Ovregaard A, Glaser R, Hirschberg AL, Aspenstrom P, Brauner A (2013) Estrogen supports urothelial defense mechanisms. Sci Transl Med 5:190ra80

    PubMed  Google Scholar 

  70. Han JH, Kim MS, Lee MY, Kim TH, Lee MK, Kim HR, Myung SC (2010) Modulation of human beta-defensin-2 expression by 17β-estradiol and progesterone in vaginal epithelial cells. Cytokine 49:209–214

    CAS  PubMed  Google Scholar 

  71. Nienhouse V, Gao X, Dong Q, Nelson DE, Toh E, McKinley K, Schreckenberger P, Shibata N, Fok CS, Mueller ER, Brubaker L, Wolfe AJ, Radek KA (2014) Interplay between bladder microbiota and urinary antimicrobial peptides: mechanisms for human urinary tract infection risk and symptom severity. PLoS One 9:e114185

    PubMed  PubMed Central  Google Scholar 

  72. Wang C, Symington JW, Ma E, Cao B, Mysorekar IU (2013) Estrogenic modulation of uropathogenic Escherichia coli infection pathogenesis in a murine menopause model. Infect Immun 81:733–739

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Sen A, Iyer J, Boddu S, Kaul A, Kaul R (2019) Estrogen receptor α differentially modulates host immunity in the bladder and kidney in response to urinary tract infection. Am J Clin Exp Urol 7:110–122

    PubMed  PubMed Central  Google Scholar 

  74. Olson PD, McLellan LK, Hreha TN, Liu A, Briden KE, Hruska KA, Hunstad DA (2018) Androgen exposure potentiates formation of intratubular communities and renal abscesses by Escherichia coli. Kidney Int 94:502–513

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Perrotta C, Aznar M, Mejia R, Albert X, Ng CW (2008) Oestrogens for preventing recurrent urinary tract infection in postmenopausal women. Cochrane Database Syst Rev 2:CD005131

    Google Scholar 

  76. Raz R, Stamm WE (1993) A controlled trial of intravaginal rstriol in postmenopausal women with recurrent urinary-tract infections. N Engl J Med 329:753–756

    CAS  PubMed  Google Scholar 

  77. Ferrante KL, Wasenda EJ, Jung CE, Adams-Piper ER, Lukacz ES (2019) Vaginal estrogen for the prevention of recurrent urinary tract infection in postmenopausal women: a randomized clinical trial. Female Pelvic Med Reconstr Surg. https://doi.org/10.1097/SPV.0000000000000749

  78. Pabich WL, Fihn SD, Stamm WE, Scholes D, Boyko EJ, Gupta K (2003) Prevalence and determinants of vaginal flora alterations in postmenopausal women. J Infect Dis 188:1054–1058

    PubMed  Google Scholar 

  79. Elkholi DGE, Nagy H (2016) The endocrine-metabolic disorders and adverse pregnancy outcomes in metabolically obese normal weight women with polycystic ovary syndrome. Womens Health Gynecol 2:031

    Google Scholar 

  80. Tomlinson C, Macintyre H, Dorrian CA, Ahmed SF, Wallace AM (2004) Testosterone measurements in early infancy. Arch Dis Child 89:F558–F559

    CAS  Google Scholar 

  81. Lamminmaki A, Hines M, Kuiri-Hanninen T, Kilpelainen L, Dunkel L, Sankilampi U (2012) Testosterone measured in infancy predicts subsequent sex-typed behavior in boys and in girls. Horm Behav 61:611–616

    CAS  PubMed  Google Scholar 

  82. Olson PD, McLellan LK, Liu A, Briden KL, Tiemann KM, Daugherty AL, Hruska KA, Hunstad DA (2017) Renal scar formation and kidney function following antibiotic-treated murine pyelonephritis. Dis Model Mech 10:1371–1379

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Scalerandi MV, Peinetti N, Leimgruber C, Cuello Rubio MM, Nicola JP, Menezes GB, Maldonado CA, Quintar AA (2018) Inefficient N2-like neutrophils are promoted by androgens during infection. Front Immunol 9:1980

    PubMed  PubMed Central  Google Scholar 

  84. Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, Worthen GS, Albelda SM (2009) Polarization of tumor-associated neutrophil phenotype by TGF-β: "N1" versus "N2" TAN. Cancer Cell 16:183–194

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Flum AS, Firmiss PR, Bowen DK, Kukulka N, Delos Santos GB, Dettman RW, Gong EM (2017) Testosterone modifies alterations to detrusor muscle after partial bladder outlet obstruction in juvenile mice. Front Pediatr 5:132

    PubMed  PubMed Central  Google Scholar 

  86. Raeispour M, Ranjbar R (2018) Antibiotic resistance, virulence factors and genotyping of uropathogenic Escherichia coli strains. Antimicrob Resist Infect Control 7:118

    PubMed  PubMed Central  Google Scholar 

  87. Linhares I, Raposo T, Rodrigues A, Almeida A (2015) Incidence and diversity of antimicrobial multidrug resistance profiles of uropathogenic bacteria. Biomed Res Int 2015:354084

    PubMed  PubMed Central  Google Scholar 

  88. Spaulding CN, Schreiber HL, Zheng W, Dodson KW, Hazen JE, Conover MS, Wang F, Svenmarker P, Luna-Rico A, Francetic O, Andersson M, Hultgren S, Egelman EH (2018) Functional role of the type 1 pilus rod structure in mediating host-pathogen interactions. eLife 7. doi:https://doi.org/10.7554/eLife.31662

  89. Mydock-McGrane LK, Hannan TJ, Janetka JW (2017) Rational design strategies for FimH antagonists: new drugs on the horizon for urinary tract infection and Crohn's disease. Expert Opin Drug Discovery 12:711–731

    CAS  Google Scholar 

  90. Bouckaert J, Berglund J, Schembri M, De Genst E, Cools L, Wuhrer M, Hung CS, Pinkner J, Slattegard R, Zavialov A, Choudhury D, Langermann S, Hultgren SJ, Wyns L, Klemm P, Oscarson S, Knight SD, De Greve H (2005) Receptor binding studies disclose a novel class of high-affinity inhibitors of the Escherichia coli FimH adhesin. Mol Microbiol 55:441–455

    CAS  PubMed  Google Scholar 

  91. O'Brien VP, Hannan TJ, Nielsen HV, Hultgren SJ (2016) Drug and vaccine development for the treatment and prevention of urinary tract infections. Microbiol Spectr. https://doi.org/10.1097/microbiolspec.UTI-0013-2012

Download references

Funding

This work was supported by National Institutes of Health (NIH) grants R01-DK111541 and R01-DK108840; T.N.H. was supported by NIH grant T32-DK007126.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Hunstad.

Ethics declarations

Conflict of interest

D.A.H. serves on the Board of Directors of BioVersys AG, Basel, Switzerland. The other authors have no potential conflicts to disclose.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albracht, C.D., Hreha, T.N. & Hunstad, D.A. Sex effects in pyelonephritis. Pediatr Nephrol 36, 507–515 (2021). https://doi.org/10.1007/s00467-020-04492-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-020-04492-9

Keywords

Navigation