Skip to main content

Advertisement

Log in

Genetic renal disease classification by hormonal axes

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

The kidneys, which regulate many homeostatic pathways, are also a major endocrinological target organ. Many genetic renal diseases can be classified according to the affected protein along such endocrinological pathways. In this review, we examine the hypothesis that a more severe phenotype is expected as the affected protein is located more distally along such pathways. Thus, the location of a defect along its endocrinological pathway should be taken into consideration, in addition to the mutation type, when assessing genetic renal disease severity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sparks MA, Crowley SD, Gurley SB, Mirotsou M, Coffman TM (2014) Classical renin-angiotensin system in kidney physiology. Compr Physiol 4:1201–1228

    Google Scholar 

  2. Gomez RA, Belyea B, Medrano S, Pentz ES, Sequeira-Lopez ML (2013) Fate and plasticity of renin precursors in development and disease. Pediatr Nephrol 29:721–726

    Google Scholar 

  3. Sequeira-Lopez MLS, Nagalakshmi VK, Li M, Sigmund CD, Gomez RA (2015) Vascular versus tubular renin: role in kidney development. Am J Physiol Regul Integr Comp Physiol 309:R650–R657

    CAS  Google Scholar 

  4. Prieto MC, Gonzalez AA, Navar LG (2012) Evolving concepts on regulation and function of renin in distal nephron. Pflugers Arch 465:121–132

    Google Scholar 

  5. Cheng HF, Becker BN, Burns KD, Harris RC (1995) Angiotensin II upregulates type-1 angiotensin II receptors in renal proximal tubule. J Clin Invest 95:2012–2019

    CAS  Google Scholar 

  6. Sequeira Lopez ML, Pentz ES, Robert B, Abrahamson DR, Gomez RA (2001) Embryonic origin and lineage of juxtaglomerular cells. Am J Physiol Renal Physiol 281:F345–F356

    CAS  Google Scholar 

  7. Bernstein KE, Ong FS, Blackwell W-LB, Shah KH, Giani JF, Gonzalez-Villalobos RA, Shen XZ, Fuchs S, Touyz RM (2013) A modern understanding of the traditional and nontraditional biological functions of angiotensin-converting enzyme. Pharmacol Rev 65:1–46

    CAS  Google Scholar 

  8. Michaud A, Acharya KR, Masuyer G, Quenech'du N, Gribouval O, Moriniere V, Gubler MC, Corvol P (2013) Absence of cell surface expression of human ACE leads to perinatal death. Hum Mol Genet 23:1479–1491

    Google Scholar 

  9. Miyazaki Y, Tsuchida S, Nishimura H, Pope JC 4th, Harris RC, McKanna JM, Inagami T, Hogan BL, Fogo A, Ichikawa I (1998) Angiotensin induces the urinary peristaltic machinery during the perinatal period. J Clin Invest 102:1489–1497

    CAS  Google Scholar 

  10. Takahashi N, Lopez MLSS, Cowhig JEJ, Taylor MA, Hatada T, Riggs E, Lee G, Gomez RA, Kim HS, Smithies O (2005) Ren1c homozygous null mice are hypotensive and polyuric, but heterozygotes are indistinguishable from wild-type. J Am Soc Nephrol 16:125–132

    Google Scholar 

  11. Nishimura H, Ichikawa I (1999) What have we learned from gene targeting studies for the renin angiotensin system of the kidney? Intern Med 38:315–320

    CAS  Google Scholar 

  12. Gribouval O, Gonzales M, Neuhaus T, Aziza J, Bieth E, Laurent N, Bouton JM, Feuillet F, Makni S, Ben Amar H, Laube G, Delezoida AL, Bouvier R, Dijoud F, Ollagnon-Roman E, Roume J, Joubert M, Antignac C, Gubler MC (2005) Mutations in genes in the renin-angiotensin system are associated with autosomal recessive renal tubular dysgenesis. Nat Genet 37:964–968

    CAS  Google Scholar 

  13. Lacoste M, Cai Y, Guicharnaud L, Mounier F, Dumez Y, Bouvier R, Dijoud F, Gonzales M, Chatten J, Delezoide AL, Daniel L, Joubert M, Laurent N, Aziza J, Sellami T, Amar HB, Jarnet C, Frances AM, Daikha-Dahmane F, Coulomb A, Neuhaus TJ, Foligut B, Chenal P, Marcorelles P, Gasc JM, Corvol P, Gubler MC (2006) Renal tubular dysgenesis, a not uncommon autosomal recessive disorder leading to oligohydramnios: role of the renin-angiotensin system. J Am Soc Nephrol 17:2253–2263

    CAS  Google Scholar 

  14. MacMahon P, Blackie RA, House MJ, Risdon RA, Crawfurd MD (1990) A further family with congenital renal proximal tubular dysgenesis. J Med Genet 27:395–398

    CAS  Google Scholar 

  15. Schreiber R, Gubler M-C, Gribouval O, Shalev H, Landau D (2010) Inherited renal tubular dysgenesis may not be universally fatal. Pediatr Nephrol 25:2531–2534

    Google Scholar 

  16. Gribouval O, Moriniere V, Pawtowski A, Arrondel C, Sallinen SL, Saloranta C, Clericuzio C, Viot G, Tantau J, Blesson S, Cloarec S, Machet MC, Chitayat D, Thauvin C, Laurent N, Sampson JR, Bernstein JA, Clemenson A, Prieur F, Daniel L, Levy-Mozziconacci A, Lachlan K, Alessandri JL, Cartault F, Rivière JP, Picard N, Baumann C, Delezoide AL, Belar Ortega M, Chassaing N, Labrune P, Yu S, Firth H, Wellesley D, Bitzan M, Alfares A, Braverman N, Krogh L, Tolmie J, Gaspar H, Doray B, Majore S, Bonneau D, Triau S, Loirat C, David A, Bartholdi D, Peleg A, Brackman D, Stone R, DeBerardinis R, Corvol P, Michaud A, Antignac C, Gubler MC (2012) Spectrum of mutations in the renin-angiotensin system genes in autosomal recessive renal tubular dysgenesis. Hum Mutat 33:316–326

    CAS  Google Scholar 

  17. Holmes CL, Landry DW, Granton JT (2003) Science review: vasopressin and the cardiovascular system part 1-receptor physiology. Crit Care 7:427–434

    Google Scholar 

  18. Zenteno-Savin T, Sada-Ovalle I, Ceballos G, Rubio R (2000) Effects of arginine vasopressin in the heart are mediated by specific intravascular endothelial receptors. Eur J Pharmacol 410:15–23

    CAS  Google Scholar 

  19. Marr N, Bichet DG, Hoefs S, Savelkoul PJ, Konings IB, De Mattia F, Graat MP, Arthus MF, Lonergan M, Fujiwara TM, Knoers NV, Landau D, Balfe WJ, Oksche A, Rosenthal W, Müller D, Van Os CH, Deen PM (2002) Cell-biologic and functional analyses of five new aquaporin-2 missense mutations that cause recessive nephrogenic diabetes insipidus. J Am Soc Nephrol 13:2267–2277

    CAS  Google Scholar 

  20. Harris HW Jr, Zeidel ML, Jo I, Hammond TG (1994) Characterization of purified endosomes containing the antidiuretic hormone-sensitive water channel from rat renal papilla. J Biol Chem 269:11993–12000

    CAS  Google Scholar 

  21. Boone M, Deen PMT (2008) Physiology and pathophysiology of the vasopressin-regulated renal water reabsorption. Pflugers Arch 456:1005–1024

    CAS  Google Scholar 

  22. Bothra M, Jain V (2014) Diabetes insipidus in pediatric patients. Indian J Pediatr 81:1285–1286

    Google Scholar 

  23. Dabrowski E, Kadakia R, Zimmerman D (2016) Diabetes insipidus in infants and children. Best practice and research. Clin Endocrinol Metabol 30:317–328

    Google Scholar 

  24. Kim RJ, Malattia C, Allen M, Moshang T Jr, Maghnie M (2004) Vasopressin and desmopressin in central diabetes insipidus: adverse effects and clinical considerations. Pediatr Endocrinol Rev 2(Suppl 1):115–123

    Google Scholar 

  25. Kim G-H, Lee JW, Oh YK, Chang HR, Joo KW, Na KY, Earm JH, Knepper MA, Han JS (2004) Antidiuretic effect of hydrochlorothiazide in lithium-induced nephrogenic diabetes insipidus is associated with upregulation of aquaporin-2, Na-Cl co-transporter, and epithelial sodium channel. J Am Soc Nephrol 15:2836–2843

    CAS  Google Scholar 

  26. Moeller HB, Rittig S, Fenton RA (2013) Nephrogenic diabetes insipidus: essential insights into the molecular background and potential therapies for treatment. Endocr Rev 34:278–301

    CAS  Google Scholar 

  27. Schrier RW (2008) Molecular mechanisms of clinical concentrating and diluting disorders. Prog Brain Res 170:539–550

    CAS  Google Scholar 

  28. Shalev H, Romanovsky I, Knoers NV, Lupa S, Landau D (2004) Bladder function impairment in aquaporin-2 defective nephrogenic diabetes insipidus. Nephrol Dial Transplant 19:608–613

    CAS  Google Scholar 

  29. McDill BW, Li SZ, Kovach PA, Ding L, Chen F (2006) Congenital progressivehydronephrosis (cph) is caused by an S256L mutation in aquaporin-2 that affects its phosphorylation and apical membrane accumulation. Proc Natl Acad Sci U S A103:6952–6957

    Google Scholar 

  30. Earm JH, Christensen BM, Frøkiaer J, Marples D, Han JS, Knepper MA, Nielsen S (1998) Decreased aquaporin-2 expression and apical plasma membrane delivery in kidney collecting ducts of polyuric hypercalcemic rats. J Am Soc Nephrol 9:2181–2193

    CAS  Google Scholar 

  31. Pillai BP, Unnikrishnan AG, Pavithran PV (2011) Syndrome of inappropriate antidiuretic hormone secretion: revisiting a classical endocrine disorder. Indian J Endocrinol Metab 15(Suppl 3):S208–S215

    Google Scholar 

  32. Laville M, Burst V, Peri A, Verbalis JG (2013) Hyponatremia secondary to the syndrome of inappropriate secretion of antidiuretic hormone (SIADH): therapeutic decision-making in real-life cases. Clin Kidney J 6(Suppl 1):i1–i20

    CAS  Google Scholar 

  33. Chong C, Hamid A, Yao T, Garza AE, Pojoga LH, Adler GK, Romero JR, Williams GH (2017) Regulation of aldosterone secretion by mineralocorticoid receptor-mediated signaling. J Endocrinol 232:525–534

    CAS  Google Scholar 

  34. Palmer BF (2015) Regulation of potassium homeostasis. Clin J Am Soc Nephrol 10:1050–1060

    CAS  Google Scholar 

  35. Munoz-Durango N, Vecchiola A, Gonzalez-Gomez LM, Simon F, Riedel CA, Fardella CE, Kalergis AM (2015) Modulation of immunity and inflammation by the mineralocorticoid receptor and aldosterone. Biomed Res Int 2015:652738

    CAS  Google Scholar 

  36. Roy A, Al-Bataineh MM, Pastor-Soler NM (2015) Collecting duct intercalated cell function and regulation. Clin J Am Soc Nephrol 10:305–324

    CAS  Google Scholar 

  37. Riepe FG (2013) Pseudohypoaldosteronism. Endocr Dev 24:86–95

    CAS  Google Scholar 

  38. Kanda K, Nozu K, Yokoyama N, Morioka I, Miwa A, Hashimura Y, Kaito H, Iijima K, Matsuo M (2009) Autosomal dominant pseudohypoaldosteronism type 1 with a novel splice site mutation in MR gene. BMC Nephrol 10:37

    Google Scholar 

  39. Zennaro M-C, Fernandes-Rosa F (2017) 30 years of the mineralocorticoid receptor: mineralocorticoid receptor mutations. J Endocrinol 234:T93–T106

    CAS  Google Scholar 

  40. Amin N, Alvi NS, Barth JH, Barth JH, Field HP, Finlay E, Tyerman K, Frazer S, Savill G, Wright NP, Makaya T, Mushtaq T (2013) Pseudohypoaldosteronism type 1: clinical features and management in infancy. Endocrinol Diabetes Metab Case Rep 2013:130010

    CAS  Google Scholar 

  41. Verouti SN, Boscardin E, Hummler E, Frateschi S (2015) Regulation of blood pressure and renal function by NCC and ENaC: lessons from genetically engineered mice. Curr Opin Pharmacol 21:60–72

    CAS  Google Scholar 

  42. Kerem E, Bistritzer T, Hanukoglu A, Hofmann T, Zhou Z, Bennett W, MacLaughlin E, Barker P, Nash M, Quittell L, Boucher R, Knowles MR (1999) Pulmonary epithelial sodium-channel dysfunction and excess airway liquid in pseudohypoaldosteronism. N Engl J Med 341:156–162

    CAS  Google Scholar 

  43. Garty BZ (1999) Chronic Pseudomonas colonization of the skin, ear and eyes in a child with type I pseudohypoaldosteronism. Acta Paediatr 88:472–473

    CAS  Google Scholar 

  44. Hubert EL, Teissier R, Fernandes-Rosa FL, Fay M, Rafestin-Oblin ME, Jeunemaitre X, Metz C, Escoubet B, Zennaro MC (2011) Mineralocorticoid receptor mutations and a severe recessive pseudohypoaldosteronism type 1. J Am Soc Nephrol 22:1997–2003

    CAS  Google Scholar 

  45. Bleich M, Warth R, Schmidt-Hieber M, Schulz-Baldes A, Hasselblatt P, Fisch D, Berger S, Kunzelmann K, Kriz W, Schütz G, Greger R (1999) Rescue of the mineralocorticoid receptor knock-out mouse. Pflugers Arch 438:245–254

    CAS  Google Scholar 

  46. Dave-Sharma S, Wilson RC, Harbison MD, Newfield R, Azar MR, Krozowski ZS, Funder JW, Shackleton CH, Bradlow HL, Wei JQ, Hertecant J, Moran A, Neiberger RE, Balfe JW, Fattah A, Daneman D, Akkurt HI, De Santis C, New MI (1998) Examination of genotype and phenotype relationships in 14 patients with apparent mineralocorticoid excess. J Clin Endocrinol Metab 83:2244–2254

    CAS  Google Scholar 

  47. Razzaghy-Azar M, Yau M, Khattab A, New MI (2017) Apparent mineralocorticoid excess and the long-term treatment of genetic hypertension. J Steroid Biochem Mol Biol 165:145–150

    CAS  Google Scholar 

  48. Dluhy RG, Anderson B, Harlin B, Ingelfinger J, Lifton R (2001) Glucocorticoid-remediable aldosteronism is associated with severe hypertension in early childhood. J Pediatr 138:715–720

    CAS  Google Scholar 

  49. Geller DS, Farhi A, Pinkerton N, Fradley M, Moritz M, Spitzer A, Meinke G, Tsai FT, Sigler PB, Lifton RP (2000) Activating mineralocorticoid receptor mutation in hypertension exacerbated by pregnancy. Science 289:119–123

    CAS  Google Scholar 

  50. Cui Y, Tong A, Jiang J, Wang F, Li C (2017) Liddle syndrome: clinical and genetic profiles. J Clin Hypertens (Greenwich) 19:524–529

    CAS  Google Scholar 

  51. Strom TM, Jüppner H (2008) PHEX, FGF23, DMP1 and beyond. Curr Opin Nephrol Hypertens 17:357–362

    CAS  Google Scholar 

  52. Gattineni J, Bates C, Twombley K, Dwarakanath V, Robinson ML, Goetz R, Mohammadi M, Baum M (2009) FGF23 decreases renal NaPi-2a and NaPi-2c expression and induces hypophosphatemia in vivo predominantly via FGF receptor 1. Am J Physiol Renal Physiol 297:F282–F291

    CAS  Google Scholar 

  53. Erben RG, Andrukhova O (2017) FGF23-Klotho signaling axis in the kidney. Bone 100:62–68

    CAS  Google Scholar 

  54. Erben RG (2017) Pleiotropic actions of FGF23. Toxicol Pathol 45:904–910

    CAS  Google Scholar 

  55. Kovesdy CP, Quarles LD (2013) Fibroblast growth factor-23: what we know, what we don’t know, and what we need to know. Nephrol Dial Transplant 28:2228–2236

    CAS  Google Scholar 

  56. Liu S, Tang W, Zhou J, Stubbs JR, Luo Q, Pi M, Quarles LD (2006) Fibroblast growth factor 23 is a counter-regulatory phosphaturic hormone for vitamin D. J Am Soc Nephrol 17:1305–1315

    CAS  Google Scholar 

  57. Guo Y-C, Yuan Q (2015) Fibroblast growth factor 23 and bone mineralization. Int J Oral Sci 7:8–13

    Google Scholar 

  58. Acar S, Demir K, Shi Y (2017) Genetic causes of rickets. J Clin Res Pediatr Endocrinol 9(Suppl 2):88–105

    Google Scholar 

  59. White KE, Cabral JM, Davis SI, Fishburn T, Evans WE, Ichikawa S, Fields J, Yu X, Shaw NJ, McLellan NJ, McKeown C, FitzPatrick D, Yu K, Ornitz DM, Econs M (2005) Mutations that cause osteoglophonic dysplasia define novel roles for FGFR1 in bone elongation. Am J Hum Genet 76:361–367

    CAS  Google Scholar 

  60. Magen D, Berger L, Coady MJ, Ilivitzki A, Militianu D, Tieder M, Selig S, Lapointe JY, Zelikovic I, Skorecki K (2010) A loss-of-function mutation in NaPi-IIa and renal Fanconi’s syndrome. N Engl J Med 362:1102–1109

    CAS  Google Scholar 

  61. Fathi I, Sakr M (2014) Review of tumoral calcinosis: a rare clinico-pathological entity. World J Clin cases 2:409–414

    Google Scholar 

  62. Garringer HJ, Malekpour M, Esteghamat F, Mortazavi SM, Davis SI, Farrow EG, Yu X, Arking DE, Dietz HC, White KE (2008) Molecular genetic and biochemical analyses of FGF23 mutations in familial tumoral calcinosis. Am J Physiol Endocrinol Metab 295:E929–E937

    CAS  Google Scholar 

  63. Garringer HJ, Fisher C, Larsson TE, Davis SI, Koller DL, Cullen MJ, Draman MS, Conlon N, Jain A, Fedarko NS, Dasgupta B, White KE (2006) The role of mutant UDP-N-acetyl-alpha-D-galactosamine-polypeptide N-acetylgalactosaminyltransferase 3 in regulating serum intact fibroblast growth factor 23 and matrix extracellular phosphoglycoprotein in heritable tumoral calcinosis. J Clin Endocrinol Metab 91:4037–4042

    CAS  Google Scholar 

  64. Topaz O, Shurman DL, Bergman R, Indelman M, Ratajczak P, Mizrachi M, Khamaysi Z, Behar D, Petronius D, Friedman V, Zelikovic I, Raimer S, Metzker A, Richard G, Sprecher E (2004) Mutations in GALNT3, encoding a protein involved in O-linked glycosylation, cause familial tumoral calcinosis. Nat Genet 36:579–581

    CAS  Google Scholar 

  65. Frishberg Y, Ito N, Rinat C, Yamazaki Y, Feinstein S, Urakawa I, Navon-Elkan P, Becker-Cohen R, Yamashita T, Araya K, Igarashi T, Fujita T, Fukumoto S (2007) Hyperostosis-hyperphosphatemia syndrome: a congenital disorder of O-glycosylation associated with augmented processing of fibroblast growth factor 23. J Bone Miner Res 22:235–242

    CAS  Google Scholar 

  66. Frishberg Y, Ito N, Rinat C, Yamazaki Y, Feinstein S, Urakawa I, Navon-Elkan P, Becker-Cohen R, Yamashita T, Araya K, Igarashi T, Fujita T, Fukumoto S (2007) Hyperostosis-hyperphosphatemia syndrome: a congenital disorder of O-glycosylation associated with augmented processing of fibroblast growth factor 23. J Bone Miner Res 22:235–242

    CAS  Google Scholar 

  67. Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, Fujita T, Fukumoto S, Yamashita T (2006) Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444:770–774

    CAS  Google Scholar 

  68. Han X, Yang J, Li L, Huang J, King G, Quarles LD (2016) Conditional deletion of Fgfr1 in the proximal and distal tubule identifies distinct roles in phosphate and calcium transport. PLoS One 11:e0147845

    Google Scholar 

  69. Yanochko GM, Vitsky A, Heyen JR, Hirakawa B, Lam JL, May J, Nichols T, Sace F, Trajkovic D, Blasi E (2013) Pan-FGFR inhibition leads to blockade of FGF23 signaling, soft tissue mineralization, and cardiovascular dysfunction. Toxicol Sci 135:451–464

    CAS  Google Scholar 

  70. Hershberg R (2015) Mutation- the engine of evolution: studying mutation and its role in the evolution of bacteria. Cold Spring Harb Perspect Biol 7:a018077

    Google Scholar 

  71. 1000 Genomes Project Consortium, Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, Gibbs RA, Hurles ME, McVean GA (2010) A map of human genome variation from population-scale sequencing. Nature 467:1061–1073

    Google Scholar 

  72. Blum WF, Alherbish A, Alsagheir A, El Awwa A, Kaplan W, Koledova E, Savage MO (2018) The growth hormone-insulin-like growth factor-I axis in the diagnosis and treatment of growth disorders. Endocr Connect 7:R212–R222

    CAS  Google Scholar 

  73. Turan S (2017) Current nomenclature of pseudohypoparathyroidism: inactivating parathyroid hormone/parathyroid hormone-related protein signaling disorder. J Clin Res Pediatr Endocrinol 9(Suppl 2):58–68

    Google Scholar 

  74. Kronenberg HM (2003) Developmental regulation of the growth plate. Nature 423:332–336

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Landau.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rotem-Grunbaum, B., Landau, D. Genetic renal disease classification by hormonal axes. Pediatr Nephrol 35, 2211–2219 (2020). https://doi.org/10.1007/s00467-019-04437-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-019-04437-x

Keywords

Navigation