Skip to main content

Advertisement

Log in

Membranous nephropathy: diagnosis, treatment, and monitoring in the post-PLA2R era

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Membranous nephropathy (MN) is an immune complex-mediated cause of the nephrotic syndrome that can occur in all age groups, from infants to the very elderly. However, nephrotic syndrome in children is more frequently caused by conditions such as minimal change disease or focal segmental glomerulosclerosis, and much less commonly by MN. While systemic conditions such as lupus or infections such as hepatitis B may more commonly be associated as secondary causes with MN in the younger population, primary or “idiopathic” MN has generally been considered a disease of adults. Autoantibodies both to the M-type phospholipase A2 receptor (PLA2R) and to thrombospondin type-1 domain-containing 7A (THSD7A), initially described in adult MN, have now been identified in children and adolescents with MN and serve as a useful diagnostic and monitoring tool in this younger population as well. Whereas definitive therapy for secondary forms of MN should be targeted at the underlying cause, immunosuppressive therapy is often necessary for primary disease. Rituximab has been successfully used in the treatment of MN, and is likely effective in children with MN as well, although dosing in the pediatric population is not well established. This review highlights the new findings in adult and pediatric MN since last reviewed in this journal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ayalon R, Beck LH Jr (2015) Membranous nephropathy: not just a disease for adults. Pediatr Nephrol 30:31–39

    PubMed  Google Scholar 

  2. Menon S, Valentini RP (2010) Membranous nephropathy in children: clinical presentation and therapeutic approach. Pediatr Nephrol 25:1419–1428

    PubMed  Google Scholar 

  3. Larsen CP, Cossey LN, Beck LH (2016) THSD7A staining of membranous glomerulopathy in clinical practice reveals cases with dual autoantibody positivity. Mod Pathol 29:421–426

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Tian C, Li L, Liu T, Qu X, Qiu Y (2019) Circulating antibodies against M-type phospholipase A2 receptor and thrombospondin type-1 domain-containing 7A in Chinese patients with membranous nephropathy. Int Urol Nephrol 51:1371–1377

    CAS  PubMed  Google Scholar 

  5. Zaghrini C, Seitz-Polski B, Justino J, Dolla G, Payre C, Jourde-Chiche N, Van de Logt AE, Booth C, Rigby E, Lonnbro-Widgren J, Nystrom J, Mariat C, Cui Z, Wetzels JFM, Ghiggeri G, Beck LH Jr, Ronco P, Debiec H, Lambeau G (2019) Novel ELISA for thrombospondin type 1 domain-containing 7A autoantibodies in membranous nephropathy. Kidney Int 95:666–679

    CAS  PubMed  Google Scholar 

  6. Sethi S, Madden BJ, Debiec H, Charlesworth MC, Gross L, Ravindran A, Hummel AM, Specks U, Fervenza FC, Ronco P (2019) Exostosin 1/exostosin 2-associated membranous nephropathy. J Am Soc Nephrol 30:1123–1136

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Moxey-Mims MM, Stapleton FB, Feld LG (1994) Applying decision analysis to management of adolescent idiopathic nephrotic syndrome. Pediatr Nephrol 8:660–664

    CAS  PubMed  Google Scholar 

  8. Mubarak M, Kazi JI, Lanewala A, Hashmi S, Akhter F (2012) Pathology of idiopathic nephrotic syndrome in children: are the adolescents different from young children? Nephrol Dial Transplant 27:722–726

    PubMed  Google Scholar 

  9. Nie S, He W, Huang T, Liu D, Wang G, Geng J, Chen N, Xu G, Zhang P, Luo Y, Nie J, Xu X, Hou FF (2018) The spectrum of biopsy-proven glomerular diseases among children in China: a national, cross-sectional survey. Clin J Am Soc Nephrol 13:1047–1054

    PubMed  PubMed Central  Google Scholar 

  10. Zhang XD, Cui Z, Zhao MH (2018) The genetic and environmental factors of primary membranous nephropathy: an overview from China. Kidney Dis (Basel) 4:65–73

    Google Scholar 

  11. Zhu P, Zhou FD, Wang SX, Zhao MH, Wang HY (2015) Increasing frequency of idiopathic membranous nephropathy in primary glomerular disease: a 10-year renal biopsy study from a single Chinese nephrology centre. Nephrology (Carlton) 20:560–566

    Google Scholar 

  12. Xu X, Wang G, Chen N, Lu T, Nie S, Xu G, Zhang P, Luo Y, Wang Y, Wang X, Schwartz J, Geng J, Hou FF (2016) Long-term exposure to air pollution and increased risk of membranous nephropathy in China. J Am Soc Nephrol 27:3739–3746

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Fidan K, Isik Gonul I, Buyukkaragoz B, Isiyel E, Arinsoy T, Soylemezoglu O (2016) Changing trends in pediatric renal biopsies: analysis of pediatric renal biopsies in national nephrology registry data. Ren Fail 38:1228–1233

    PubMed  Google Scholar 

  14. Liu J, Liang W, Jing W, Liu M (2019) Countdown to 2030: eliminating hepatitis B disease, China. Bull World Health Organ 97:230–238

    PubMed  PubMed Central  Google Scholar 

  15. Couser WG (2017) Primary membranous nephropathy. Clin J Am Soc Nephrol 12:983–997

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen A, Frank R, Vento S, Crosby V, Chandra M, Gauthier B, Valderrama E, Trachtman H (2007) Idiopathic membranous nephropathy in pediatric patients: presentation, response to therapy, and long-term outcome. BMC Nephrol 8:11

    PubMed  PubMed Central  Google Scholar 

  17. Liu A, Wu H, Su Y, Wang L, Xu G (2015) Idiopathic membranous nephropathy in children in China. Fetal Pediatr Pathol 34:185–189

    CAS  PubMed  Google Scholar 

  18. Ponticelli C, Glassock RJ (2014) Glomerular diseases: membranous nephropathy—a modern view. Clin J Am Soc Nephrol 9:609–616

    PubMed  Google Scholar 

  19. National Institutes of Health NIoDaDaKD, U.S. Renal Data System (2012) USRDS 2012 annual data report: atlas of chronic kidney disease and end-stage renal disease in the United States, Bethesda, MD

  20. Farquhar MG, Saito A, Kerjaschki D, Orlando RA (1995) The Heymann nephritis antigenic complex: megalin (gp330) and RAP. J Am Soc Nephrol 6:35–47

    CAS  PubMed  Google Scholar 

  21. Debiec H, Guigonis V, Mougenot B, Decobert F, Haymann JP, Bensman A, Deschenes G, Ronco PM (2002) Antenatal membranous glomerulonephritis due to anti-neutral endopeptidase antibodies. N Engl J Med 346:2053–2060

    PubMed  Google Scholar 

  22. Beck LH Jr, Bonegio RG, Lambeau G, Beck DM, Powell DW, Cummins TD, Klein JB, Salant DJ (2009) M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. N Engl J Med 361:11–21

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Borza DB (2016) Alternative pathway dysregulation and the conundrum of complement activation by IgG4 immune complexes in membranous nephropathy. Front Immunol 7:157

    PubMed  PubMed Central  Google Scholar 

  24. Ronco P, Debiec H (2015) Pathophysiological advances in membranous nephropathy: time for a shift in patient's care. Lancet 385:1983–1992

    PubMed  Google Scholar 

  25. Liu Y, Li X, Ma C, Wang P, Liu J, Su H, Zhuo H, Kong X, Xu D, Xu D (2018) Serum anti-PLA2R antibody as a diagnostic biomarker of idiopathic membranous nephropathy: the optimal cut-off value for Chinese patients. Clin Chim Acta 476:9–14

    CAS  PubMed  Google Scholar 

  26. Timmermans SA, Damoiseaux JG, Heerings-Rewinkel PT, Ayalon R, Beck LH Jr, Schlumberger W, Salant DJ, van Paassen P, Tervaert JW, Registry LR (2014) Evaluation of anti-PLA2R1 as measured by a novel ELISA in patients with idiopathic membranous nephropathy: a cohort study. Am J Clin Pathol 142:29–34

    PubMed  Google Scholar 

  27. van de Logt AE, Hofstra JM, Wetzels JF (2015) Serum anti-PLA2R antibodies can be initially absent in idiopathic membranous nephropathy: seroconversion after prolonged follow-up. Kidney Int 87:1263–1264

    PubMed  Google Scholar 

  28. Stanescu HC, Arcos-Burgos M, Medlar A, Bockenhauer D, Kottgen A, Dragomirescu L, Voinescu C, Patel N, Pearce K, Hubank M, Stephens HA, Laundy V, Padmanabhan S, Zawadzka A, Hofstra JM, Coenen MJ, den Heijer M, Kiemeney LA, Bacq-Daian D, Stengel B, Powis SH, Brenchley P, Feehally J, Rees AJ, Debiec H, Wetzels JF, Ronco P, Mathieson PW, Kleta R (2011) Risk HLA-DQA1 and PLA(2)R1 alleles in idiopathic membranous nephropathy. N Engl J Med 364:616–626

    CAS  PubMed  Google Scholar 

  29. Beck LH Jr (2017) PLA2R and THSD7A: disparate paths to the same disease? J Am Soc Nephrol 28:2579–2589

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Le WB, Shi JS, Zhang T, Liu L, Qin HZ, Liang S, Zhang YW, Zheng CX, Jiang S, Qin WS, Zhang HT, Liu ZH (2017) HLA-DRB1*15:01 and HLA-DRB3*02:02 in PLA2R-related membranous nephropathy. J Am Soc Nephrol 28:1642–1650

    CAS  PubMed  Google Scholar 

  31. Cui Z, Xie LJ, Chen FJ, Pei ZY, Zhang LJ, Qu Z, Huang J, Gu QH, Zhang YM, Wang X, Wang F, Meng LQ, Liu G, Zhou XJ, Zhu L, Lv JC, Liu F, Zhang H, Liao YH, Lai LH, Ronco P, Zhao MH (2017) MHC class II risk alleles and amino acid residues in idiopathic membranous nephropathy. J Am Soc Nephrol 28:1651–1664

    CAS  PubMed  Google Scholar 

  32. Wang HY, Cui Z, Xie LJ, Zhang LJ, Pei ZY, Chen FJ, Qu Z, Huang J, Zhang YM, Wang X, Wang F, Meng LQ, Cheng XY, Liu G, Zhou XJ, Zhang H, Debiec H, Ronco P, Zhao MH (2018) HLA class II alleles differing by a single amino acid associate with clinical phenotype and outcome in patients with primary membranous nephropathy. Kidney Int 94:974–982

    CAS  PubMed  Google Scholar 

  33. Fresquet M, Jowitt TA, Gummadova J, Collins R, O'Cualain R, McKenzie EA, Lennon R, Brenchley PE (2015) Identification of a major epitope recognized by PLA2R autoantibodies in primary membranous nephropathy. J Am Soc Nephrol 26:302–313

    PubMed  Google Scholar 

  34. Seitz-Polski B, Dolla G, Payre C, Girard CA, Polidori J, Zorzi K, Birgy-Barelli E, Jullien P, Courivaud C, Krummel T, Benzaken S, Bernard G, Burtey S, Mariat C, Esnault VL, Lambeau G (2016) Epitope spreading of autoantibody response to PLA2R associates with poor prognosis in membranous nephropathy. J Am Soc Nephrol 27:1517–1533

    CAS  PubMed  Google Scholar 

  35. Seitz-Polski B, Debiec H, Rousseau A, Dahan K, Zaghrini C, Payre C, Esnault VLM, Lambeau G, Ronco P (2018) Phospholipase A2 receptor 1 epitope spreading at baseline predicts reduced likelihood of remission of membranous nephropathy. J Am Soc Nephrol 29:401–408

    CAS  PubMed  Google Scholar 

  36. Seitz-Polski B, Dahan K, Debiec H, Rousseau A, Andreani M, Zaghrini C, Ticchioni M, Rosenthal A, Benzaken S, Bernard G, Lambeau G, Ronco P, Esnault VLM (2019) High-dose rituximab and early remission in PLA2R1-related membranous nephropathy. Clin J Am Soc Nephrol 14:1173–1182

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Tomas NM, Beck LH Jr, Meyer-Schwesinger C, Seitz-Polski B, Ma H, Zahner G, Dolla G, Hoxha E, Helmchen U, Dabert-Gay AS, Debayle D, Merchant M, Klein J, Salant DJ, Stahl RAK, Lambeau G (2014) Thrombospondin type-1 domain-containing 7A in idiopathic membranous nephropathy. N Engl J Med 371:2277–2287

    PubMed  PubMed Central  Google Scholar 

  38. Stoddard SV, Welsh CL, Palopoli MM, Stoddard SD, Aramandla MP, Patel RM, Ma H, Beck LH Jr (2019) Structure and function insights garnered from in silico modeling of the thrombospondin type-1 domain-containing 7A antigen. Proteins 87:136–145

    CAS  PubMed  Google Scholar 

  39. Herwig J, Skuza S, Sachs W, Sachs M, Failla AV, Rune G, Meyer TN, Fester L, Meyer-Schwesinger C (2019) Thrombospondin type 1 domain-containing 7A localizes to the slit diaphragm and stabilizes membrane dynamics of fully differentiated podocytes. J Am Soc Nephrol 30:824–839

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Tomas NM, Hoxha E, Reinicke AT, Fester L, Helmchen U, Gerth J, Bachmann F, Budde K, Koch-Nolte F, Zahner G, Rune G, Lambeau G, Meyer-Schwesinger C, Stahl RA (2016) Autoantibodies against thrombospondin type 1 domain-containing 7A induce membranous nephropathy. J Clin Invest 126:2519–2532

    PubMed  PubMed Central  Google Scholar 

  41. Tomas NM, Meyer-Schwesinger C, von Spiegel H, Kotb AM, Zahner G, Hoxha E, Helmchen U, Endlich N, Koch-Nolte F, Stahl RAK (2017) A heterologous model of thrombospondin type 1 domain-containing 7A-associated membranous nephropathy. J Am Soc Nephrol 28:3262–3277

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Seifert L, Hoxha E, Eichhoff AM, Zahner G, Dehde S, Reinhard L, Koch-Nolte F, Stahl RAK, Tomas NM (2018) The most N-terminal region of THSD7A is the predominant target for autoimmunity in THSD7A-associated membranous nephropathy. J Am Soc Nephrol 29:1536–1548

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Fresquet M, Rhoden SJ, Jowitt TA, McKenzie EA, Roberts I, Lennon R, Brenchley PE (2019) Autoantigens PLA2R and THSD7A in membranous nephropathy share a common epitope motif in the N-terminal domain. J Autoimmun. https://doi.org/10.1016/j.jaut.2019102308

  44. Hoxha E, Beck LH Jr, Wiech T, Tomas NM, Probst C, Mindorf S, Meyer-Schwesinger C, Zahner G, Stahl PR, Schopper R, Panzer U, Harendza S, Helmchen U, Salant DJ, Stahl RA (2017) An indirect immunofluorescence method facilitates detection of thrombospondin type 1 domain-containing 7A-specific antibodies in membranous nephropathy. J Am Soc Nephrol 28:520–531

    CAS  PubMed  Google Scholar 

  45. De Vriese AS, Glassock RJ, Nath KA, Sethi S, Fervenza FC (2017) A proposal for a serology-based approach to membranous nephropathy. J Am Soc Nephrol 28:421–430

    PubMed  Google Scholar 

  46. Cossey LN, Walker PD, Larsen CP (2013) Phospholipase A2 receptor staining in pediatric idiopathic membranous glomerulopathy. Pediatr Nephrol 28:2307–2311

    PubMed  Google Scholar 

  47. Kumar V, Varma AK, Nada R, Ghosh R, Suri D, Gupta A, Kumar V, Rathi M, Kohli H, Jha V, Gupta K, Ramachandran R (2017) Primary membranous nephropathy in adolescence: a prospective study. Nephrology (Carlton) 22:678–683

    CAS  Google Scholar 

  48. Kanda S, Horita S, Yanagihara T, Shimizu A, Hattori M (2017) M-type phospholipase A2 receptor (PLA2R) glomerular staining in pediatric idiopathic membranous nephropathy. Pediatr Nephrol 32:713–717

    PubMed  Google Scholar 

  49. Zhang D, Wu Y, Zhang C, Zhang W, Zou J, Jiang G (2019) Compared staining of the phospholipase A2 receptor in the glomeruli of Chinese adults and children with idiopathic membranous nephropathy. Pathol Res Pract 215:952–956

    CAS  PubMed  Google Scholar 

  50. Dettmar AK, Wiech T, Kemper MJ, Soave A, Rink M, Oh J, Stahl RAK, Hoxha E, Pediatric MN Study Group (2018) Immunohistochemical and serological characterization of membranous nephropathy in children and adolescents. Pediatr Nephrol 33:463–472

    PubMed  Google Scholar 

  51. Al-Rabadi L, Ayalon R, Bonegio RG, Ballard JE, Fujii AM, Henderson JM, Salant DJ, Beck LH Jr (2016) Pregnancy in a patient with primary membranous nephropathy and circulating anti-PLA2R antibodies: a case report. Am J Kidney Dis 67:775–778

    PubMed  Google Scholar 

  52. Sachdeva M, Sheikh F, Beck LH, Fishbane S, Miller LJ (2018) Transplacental passage of phospholipase A2 receptor antibodies from maternal to fetal circulation and secretion into breastmilk. J Am Soc Nephrol 29:379

    Google Scholar 

  53. Leon J, Perez-Saez MJ, Batal I, Beck LH Jr, Rennke HG, Canaud G, Legendre C, Pascual J, Riella LV (2019) Membranous nephropathy post-transplantation: an update of the pathophysiology and management. Transplantation. https://doi.org/10.1097/TP.0000000000002758

  54. Grupper A, Cornell LD, Fervenza FC, Beck LH Jr, Lorenz E, Cosio FG (2016) Recurrent membranous nephropathy after kidney transplantation: treatment and long-term implications. Transplantation 100:2710–2716

    CAS  PubMed  Google Scholar 

  55. Cameron JS (1990) Membranous nephropathy in childhood and its treatment. Pediatr Nephrol 4:193–198

    CAS  PubMed  Google Scholar 

  56. Trautmann A, Lipska-Zietkiewicz BS, Schaefer F (2018) Exploring the clinical and genetic Spectrum of steroid resistant nephrotic syndrome: the PodoNet Registry. Front Pediatr 6:200

    PubMed  PubMed Central  Google Scholar 

  57. KDIGO (2012) KDIGO clinical practice guideline for glomerulonephritis. Kidney Int Suppl:139–274

  58. Sethi S, Debiec H, Madden B, Charlesworth MC, Morelle J, Gross LA, Ravindran A, Buob D, Jadoul M, Fervenza FC, Ronco P (2019) Neural epidermal growth factor-like 1 protein (NELL-1) associated membranous nephropathy. Kidney Int. https://doi.org/10.1016/j.kint.2019.09.014

  59. Hoxha E, Harendza S, Pinnschmidt HO, Tomas NM, Helmchen U, Panzer U, Stahl RA (2015) Spontaneous remission of proteinuria is a frequent event in phospholipase A2 receptor antibody-negative patients with membranous nephropathy. Nephrol Dial Transplant 30:1862–1869

    CAS  PubMed  Google Scholar 

  60. Polanco N, Gutierrez E, Covarsi A, Ariza F, Carreno A, Vigil A, Baltar J, Fernandez-Fresnedo G, Martin C, Pons S, Lorenzo D, Bernis C, Arrizabalaga P, Fernandez-Juarez G, Barrio V, Sierra M, Castellanos I, Espinosa M, Rivera F, Oliet A, Fernandez-Vega F, Praga M, Grupo de Estudio de las Enfermedades Glomerulares de la Sociedad Española de Nefrología (2010) Spontaneous remission of nephrotic syndrome in idiopathic membranous nephropathy. J Am Soc Nephrol 21:697–704

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Cattran DC, Delmore T, Roscoe J, Cole E, Cardella C, Charron R, Ritchie S (1989) A randomized controlled trial of prednisone in patients with idiopathic membranous nephropathy. N Engl J Med 320:210–215

    CAS  PubMed  Google Scholar 

  62. Valentini RP, Mattoo TK, Kapur G, Imam A (2009) Membranous glomerulonephritis: treatment response and outcome in children. Pediatr Nephrol 24:301–308

    PubMed  Google Scholar 

  63. Arif MK, Arif M, Amjad N (2016) A histopathological outlook on nephrotic syndrome: a pediatric perspective. Indian J Nephrol 26:188–191

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Remuzzi G, Chiurchiu C, Abbate M, Brusegan V, Bontempelli M, Ruggenenti P (2002) Rituximab for idiopathic membranous nephropathy. Lancet 360:923–924

    CAS  PubMed  Google Scholar 

  65. Ruggenenti P, Cravedi P, Chianca A, Perna A, Ruggiero B, Gaspari F, Rambaldi A, Marasa M, Remuzzi G (2012) Rituximab in idiopathic membranous nephropathy. J Am Soc Nephrol 23:1416–1425

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Fervenza FC, Cosio FG, Erickson SB, Specks U, Herzenberg AM, Dillon JJ, Leung N, Cohen IM, Wochos DN, Bergstralh E, Hladunewich M, Cattran DC (2008) Rituximab treatment of idiopathic membranous nephropathy. Kidney Int 73:117–125

    CAS  PubMed  Google Scholar 

  67. Fervenza FC, Abraham RS, Erickson SB, Irazabal MV, Eirin A, Specks U, Nachman PH, Bergstralh EJ, Leung N, Cosio FG, Hogan MC, Dillon JJ, Hickson LJ, Li X, Cattran DC, Mayo Nephrology Collaborative Group (2010) Rituximab therapy in idiopathic membranous nephropathy: a 2-year study. Clin J Am Soc Nephrol 5:2188–2198

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Dahan K, Debiec H, Plaisier E, Cachanado M, Rousseau A, Wakselman L, Michel PA, Mihout F, Dussol B, Matignon M, Mousson C, Simon T, Ronco P, GEMRITUX Study Group (2017) Rituximab for severe membranous nephropathy: a 6-month trial with extended follow-up. J Am Soc Nephrol 28:348–358

    CAS  PubMed  Google Scholar 

  69. Fervenza FC, Appel GB, Barbour SJ, Rovin BH, Lafayette RA, Aslam N, Jefferson JA, Gipson PE, Rizk DV, Sedor JR, Simon JF, McCarthy ET, Brenchley P, Sethi S, Avila-Casado C, Beanlands H, Lieske JC, Philibert D, Li T, Thomas LF, Green DF, Juncos LA, Beara-Lasic L, Blumenthal SS, Sussman AN, Erickson SB, Hladunewich M, Canetta PA, Hebert LA, Leung N, Radhakrishnan J, Reich HN, Parikh SV, Gipson DS, Lee DK, da Costa BR, Juni P, Cattran DC, Investigators MENTOR (2019) Rituximab or cyclosporine in the treatment of membranous nephropathy. N Engl J Med 381:36–46

    CAS  PubMed  Google Scholar 

  70. Sequential therapy with tacrolimus and rituximab in primary membranous nephropathy (STARMEN). https://clinicaltrials.gov/ct2/show/NCT01955187 Accessed 26 Nov. 2019

  71. Rituximab versus steroids and cyclophosphamide in the treatment of idiopathic membranous nephropathy (RI-CYCLO). https://clinicaltrials.gov/ct2/show/NCT03018535 Accessed 26 Nov. 2019

  72. Iijima K, Sako M, Nozu K, Mori R, Tuchida N, Kamei K, Miura K, Aya K, Nakanishi K, Ohtomo Y, Takahashi S, Tanaka R, Kaito H, Nakamura H, Ishikura K, Ito S, Ohashi Y, Rituximab for Childhood-onset Refractory Nephrotic Syndrome Study Group (2014) Rituximab for childhood-onset, complicated, frequently relapsing nephrotic syndrome or steroid-dependent nephrotic syndrome: a multicentre, double-blind, randomised, placebo-controlled trial. Lancet 384:1273–1281

    CAS  PubMed  Google Scholar 

  73. Sun L, Xu H, Shen Q, Cao Q, Rao J, Liu HM, Fang XY, Zhou LJ (2014) Efficacy of rituximab therapy in children with refractory nephrotic syndrome: a prospective observational study in Shanghai. World J Pediatr 10:59–63

    CAS  PubMed  Google Scholar 

  74. Ravani P, Rossi R, Bonanni A, Quinn RR, Sica F, Bodria M, Pasini A, Montini G, Edefonti A, Belingheri M, De Giovanni D, Barbano G, Degl'Innocenti L, Scolari F, Murer L, Reiser J, Fornoni A, Ghiggeri GM (2015) Rituximab in children with steroid-dependent nephrotic syndrome: a multicenter, open-label, noninferiority, randomized controlled trial. J Am Soc Nephrol 26:2259–2266

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Malatesta-Muncher R, Eldin KW, Beck LH Jr, Michael M (2018) Idiopathic membranous nephropathy in children treated with rituximab: report of two cases. Pediatr Nephrol 33:1089–1092

    PubMed  Google Scholar 

  76. James KE, Xiao R, Merkel PA, Weiss PF (2017) Variation in the treatment of children hospitalized with antineutrophil cytoplasmic antibody-associated vasculitis in the US. Arthritis Care Res 69:1377–1383

    CAS  Google Scholar 

  77. Jariwala MP, Laxer RM (2018) Primary vasculitis in childhood: GPA and MPA in childhood. Front Pediatr 6:226

    PubMed  PubMed Central  Google Scholar 

  78. Kallash M, Smoyer WE, Mahan JD (2019) Rituximab use in the management of childhood nephrotic syndrome. Front Pediatr 7:178

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rivka Ayalon.

Ethics declarations

Disclosures

Drs. Safar-Boueri, Piya, and Ayalon have nothing to disclose. Dr. Beck discloses the following: Coinventor on the patent “Diagnostics for membranous nephropathy” with royalties through Boston University; royalties from UpToDate for topic cards on membranous nephropathy; grant support from Sanofi/Genzyme. Advisory board participant for Genentech, Visterra.

Additional information

Answers: 1. c; 2. b; 3. b; 4. a; 5. c

Key summary points

• Membranous nephropathy should always be considered in the differential diagnosis of childhood and adolescent nephrotic syndrome

• Two main antigens (PLA2R and THSD7A) have been found to be the targets of autoimmunity in both pediatric and adult disease

• Detection and monitoring of circulating autoantibodies, which precede and predict clinical disease activity, are important for diagnosis and the monitoring of immunologic disease status in membranous nephropathy

• Proteinuria may continue well beyond the cessation of immunologic disease activity, and therefore does not always require initiation or escalation of immunosuppressive therapy.

• As in adult disease, the B cell-depleting agent rituximab may be a useful agent for the treatment of pediatric MN.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safar-Boueri, L., Piya, A., Beck, L.H. et al. Membranous nephropathy: diagnosis, treatment, and monitoring in the post-PLA2R era. Pediatr Nephrol 36, 19–30 (2021). https://doi.org/10.1007/s00467-019-04425-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-019-04425-1

Keywords

Navigation