Skip to main content
Log in

Subclinical myocardial disease in patients with primary hyperoxaluria and preserved left ventricular ejection fraction: a two-dimensional speckle-tracking imaging study

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

Primary hyperoxaluria (PH) is characterized by progressive chronic kidney disease (CKD) and systemic oxalate deposition. Myocardial dysfunction might be present early in the course of the disease. However, this hypothesis has not yet been tested in the PH population. Therefore, we aimed to determine whether strain imaging using two-dimensional speckle tracking echocardiography (2D-STE) might detect subclinical myocardial disease in otherwise asymptomatic PH patients.

Methods

Prospective study of pediatric and adolescent PH patients with preserved LV ejection fraction (LV EF) and without renal replacement therapy. Subjects underwent conventional echocardiography and 2D-STE. Global (GLS) and segmental peak systolic LV longitudinal strain (LS) measurements were obtained. Data were compared with age- and gender-matched controls, and Z-scores were calculated as appropriate.

Results

Fifteen PH patients (age 14.1 ± 5.9 years; 13/15 in CKD stages 1–2) were studied. Although LV EF was preserved (63 ± 6%) in patients, GLS was significantly impaired (GLS − 17.1 ± 2.2% vs − 22.4 ± 1.9%, p < 0.001). This was mainly due to decreased LS values in the apical segments (p < 0.05). Echocardiographic indices of ventricular wall thickness were significantly increased in patients compared to controls (all p < 0.03). GLS correlated significantly with Z-scores of diastolic interventricular wall thickness (r = − 0.57, p = 0.025) and moderately with serum creatinine levels (r = 0.53, p = 0.044). No correlation was found between GLS and blood pressure measurements.

Conclusions

Subclinical myocardial disease is already present early in the course of disease in PH patients with preserved LV EF and some degree of renal dysfunction, but without overt systemic oxalosis. Current recommendations to screen only PH patients with advanced CKD for cardiac disease should be revised accordingly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hoppe B, Beck BB, Milliner DS (2009) The primary hyperoxalurias. Kidney Int 75:1264–1271. https://doi.org/10.1038/ki.2009.32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cochat P, Rumsby G (2013) Primary hyperoxaluria. N Engl J Med 369:649–658. https://doi.org/10.1056/NEJMra1301564

    Article  CAS  PubMed  Google Scholar 

  3. Cochat P, Hulton SA, Acquaviva C, Danpure CJ, Daudon M, De Marchi M, Fargue S, Groothoff J, Harambat J, Hoppe B, Jamieson NV, Kemper MJ, Mandrile G, Marangella M, Picca S, Rumsby G, Salido E, Straub M, van Woerden CS (2012) Primary hyperoxaluria type 1: indications for screening and guidance for diagnosis and treatment. Nephrol Dial Transplant 27:1729–1736. https://doi.org/10.1093/ndt/gfs078

    Article  CAS  PubMed  Google Scholar 

  4. Beck BB, Hoyer-Kuhn H, Gobel H, Habbig S, Hoppe B (2013) Hyperoxaluria and systemic oxalosis: an update on current therapy and future directions. Expert Opin Investig Drugs 22:117–129. https://doi.org/10.1517/13543784.2013.741587

    Article  CAS  PubMed  Google Scholar 

  5. Mookadam F, Smith T, Jiamsripong P, Moustafa SE, Monico CG, Lieske JC, Milliner DS (2010) Cardiac abnormalities in primary hyperoxaluria. Circ J 74:2403–2409

    Article  Google Scholar 

  6. Lagies R, Beck BB, Hoppe B, Sreeram N, Udink ten Cate FE (2013) Apical sparing of longitudinal strain, left ventricular rotational abnormalities, and short-axis dysfunction in primary hyperoxaluria type 1. Circ Heart Fail 6:e45–e47. https://doi.org/10.1161/circheartfailure.113.000432

    Article  PubMed  Google Scholar 

  7. Palka P, Duhig E, Carey L, Galbraith A (2001) Primary oxalosis with cardiac involvement: echocardiographic features of an unusual form of cardiomyopathy. Circulation 103:E122–E123

    Article  CAS  Google Scholar 

  8. Yoshioka J, Park YD, Tanaka Y, Kobayashi Y, Miyajima M, Tani A, Hori M, Shirai D (2001) Echocardiographic features in a patient with primary oxalosis. Echocardiography 18:599–602

    Article  CAS  Google Scholar 

  9. Schulze MR, Wachter R, Schmeisser A, Fischer R, Strasser RH (2006) Restrictive cardiomyopathy in a patient with primary hyperoxaluria type II. Clin Res Cardiol 95:235–240. https://doi.org/10.1007/s00392-006-0362-2

    Article  PubMed  Google Scholar 

  10. Kalam K, Otahal P, Marwick TH (2014) Prognostic implications of global LV dysfunction: a systematic review and meta-analysis of global longitudinal strain and ejection fraction. Heart 100:1673–1680. https://doi.org/10.1136/heartjnl-2014-305538

    Article  PubMed  Google Scholar 

  11. Solomon SD, Anavekar N, Skali H, McMurray JJ, Swedberg K, Yusuf S, Granger CB, Michelson EL, Wang D, Pocock S, Pfeffer MA (2005) Influence of ejection fraction on cardiovascular outcomes in a broad spectrum of heart failure patients. Circulation 112:3738–3744. https://doi.org/10.1161/circulationaha.105.561423

    Article  PubMed  Google Scholar 

  12. Collier P, Phelan D, Klein A (2017) A test in context: myocardial strain measured by speckle-tracking echocardiography. J Am Coll Cardiol 69:1043–1056. https://doi.org/10.1016/j.jacc.2016.12.012

    Article  PubMed  Google Scholar 

  13. Krishnasamy R, Isbel NM, Hawley CM, Pascoe EM, Leano R, Haluska BA, Stanton T (2014) The association between left ventricular global longitudinal strain, renal impairment and all-cause mortality. Nephrol Dial Transplant 29:1218–1225. https://doi.org/10.1093/ndt/gfu004

    Article  CAS  PubMed  Google Scholar 

  14. Lagies R, Beck BB, Hoppe B, Sheta SS, Weiss V, Sreeram N, Udink ten Cate FE (2015) Inhomogeneous longitudinal cardiac rotation and impaired left ventricular longitudinal strain in children and young adults with end-stage renal failure undergoing hemodialysis. Echocardiography 32:1250–1260. https://doi.org/10.1111/echo.12842

    Article  PubMed  Google Scholar 

  15. Neuhauser HK, Thamm M, Ellert U, Hense HW, Rosario AS (2011) Blood pressure percentiles by age and height from nonoverweight children and adolescents in Germany. Pediatrics 127:e978–e988. https://doi.org/10.1542/peds.2010-1290

    Article  PubMed  Google Scholar 

  16. Schwartz GJ, Brion LP, Spitzer A (1987) The use of plasma creatinine concentration for estimating glomerular filtration rate in infants, children, and adolescents. Pediat Clin North Am 34:571–590

    Article  CAS  Google Scholar 

  17. Hoppe B, Kemper MJ, Bokenkamp A, Langman CB (1998) Plasma calcium-oxalate saturation in children with renal insufficiency and in children with primary hyperoxaluria. Kidney Int 54:921–925. https://doi.org/10.1046/j.1523-1755.1998.00066.x

    Article  CAS  PubMed  Google Scholar 

  18. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt JU (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 28:1–39.e14. https://doi.org/10.1016/j.echo.2014.10.003

    Article  Google Scholar 

  19. Kampmann C, Wiethoff CM, Wenzel A, Stolz G, Betancor M, Wippermann CF, Huth RG, Habermehl P, Knuf M, Emschermann T, Stopfkuchen H (2000) Normal values of M mode echocardiographic measurements of more than 2000 healthy infants and children in central. Eur Heart 83:667–672

    Article  CAS  Google Scholar 

  20. Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I, Reichek N (1986) Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol 57:450–458

    Article  CAS  Google Scholar 

  21. Daniels SR, Meyer RA, Liang YC, Bove KE (1988) Echocardiographically determined left ventricular mass index in normal children, adolescents and young adults. J Am Coll Cardiol 12:703–708

    Article  CAS  Google Scholar 

  22. de Simone G, Daniels SR, Devereux RB, Meyer RA, Roman MJ, de Divitiis O, Alderman MH (1992) Left ventricular mass and body size in normotensive children and adults: assessment of allometric relations and impact of overweight. J Am Coll Cardiol 20:1251–1260

    Article  Google Scholar 

  23. Matteucci MC, Wuhl E, Picca S, Mastrostefano A, Rinelli G, Romano C, Rizzoni G, Mehls O, de Simone G, Schaefer F (2006) Left ventricular geometry in children with mild to moderate chronic renal insufficiency. J Am Soc Nephrol 17:218–226. https://doi.org/10.1681/asn.2005030276

    Article  PubMed  Google Scholar 

  24. Marcus KA, Mavinkurve-Groothuis AMC, Barends M, van Dijk A, Feuth T, de Korte C, Kapusta L (2011) Reference values for myocardial two-dimensional strain echocardiography in a healthy pediatric and young adult cohort. J Am Soc Echocardiogr 24:625–636

    Article  Google Scholar 

  25. Potter E, Marwick TH (2018) Assessment of left ventricular function by echocardiography: the case for routinely adding global longitudinal strain to ejection fraction. JACC Cardiovasc Imaging 11:260–274. https://doi.org/10.1016/j.jcmg.2017.11.017

    Article  PubMed  Google Scholar 

  26. Panoulas VF, Sulemane S, Konstantinou K, Bratsas A, Elliott SJ, Dawson D, Frankel AH, Nihoyannopoulos P (2015) Early detection of subclinical left ventricular myocardial dysfunction in patients with chronic kidney disease. Eur Heart J Cardiovasc Imaging 16:539–548. https://doi.org/10.1093/ehjci/jeu229

    Article  PubMed  Google Scholar 

  27. Krishnasamy R, Isbel NM, Hawley CM, Pascoe EM, Burrage M, Leano R, Haluska BA, Marwick TH, Stanton T (2015) Left ventricular global longitudinal strain (GLS) is a superior predictor of all-cause and cardiovascular mortality when compared to ejection fraction in advanced chronic kidney disease. PLoS One 10:e0127044. https://doi.org/10.1371/journal.pone.0127044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Edwards NC, Moody WE, Yuan M, Hayer MK, Ferro CJ, Townend JN, Steeds RP (2015) Diffuse interstitial fibrosis and myocardial dysfunction in early chronic kidney disease. Am J Cardiol 115:1311–1317. https://doi.org/10.1016/j.amjcard.2015.02.015

    Article  PubMed  Google Scholar 

  29. Hayer MK, Price AM, Liu B, Baig S, Ferro CJ, Townend JN, Steeds RP, Edwards NC (2018) Diffuse myocardial interstitial fibrosis and dysfunction in early chronic kidney disease. Am J Cardiol 121:656–660. https://doi.org/10.1016/j.amjcard.2017.11.041

    Article  PubMed  PubMed Central  Google Scholar 

  30. Winterberg PD, Jiang R, Maxwell JT, Wang B, Wagner MB (2016) Myocardial dysfunction occurs prior to changes in ventricular geometry in mice with chronic kidney disease (CKD). Phys Rep 4:e12732. https://doi.org/10.14814/phy2.12732

    Article  CAS  Google Scholar 

  31. Mulay SR, Eberhard JN, Pfann V, Marschner JA, Darisipudi MN, Daniel C, Romoli S, Desai J, Grigorescu M, Kumar SV, Rathkolb B, Wolf E, Hrabe de Angelis M, Bauerle T, Dietel B, Wagner CA, Amann K, Eckardt KU, Aronson PS, Anders HJ, Knauf F (2016) Oxalate-induced chronic kidney disease with its uremic and cardiovascular complications in C57BL/6 mice. Am J Physiol Ren Physiol 310:F785–f795. https://doi.org/10.1152/ajprenal.00488.2015

    Article  CAS  Google Scholar 

  32. Massie BM, Bharati S, Scheinman MM, Lev M, Desai J, Rubeson E, Schmidt W (1981) Primary oxalosis with pan-conduction cardiac disease: electrophysiologic and anatomic correlation. Circulation 64:845–852

    Article  CAS  Google Scholar 

  33. Coltart DJ, Hudson RE (1971) Primary oxalosis of the heart: a cause of heart block. Br Heart J 33:315–319

    Article  CAS  Google Scholar 

  34. Liu YW, Su CT, Huang YY, Yang CS, Huang JW, Yang MT, Chen JH, Tsai WC (2011) Left ventricular systolic strain in chronic kidney disease and hemodialysis patients. Am J Nephrol 33:84–90

    Article  CAS  Google Scholar 

  35. Demetgul H, Giray D, Delibas A, Hallioglu O (2018) 2D-speckle tracking echocardiography contributes to early identification of impaired left ventricular myocardial function in children with chronic kidney disease. Cardiol Young 28:1404–1409

    Article  Google Scholar 

  36. Weaver DJ Jr, Mitsnefes MM (2018) Cardiovascular disease in children and adolescents with chronic kidney disease. Semin Nephrol 38:559–569

    Article  Google Scholar 

  37. Weaver DJ Jr, Kimball T, Witt SA, Glascock BJ, Khoury PR, Kartal J, Mitsnefes MM (2008) Subclinical systolic dysfunction in pediatric patients with chronic kidney disease. J Pediatr 153:565–569

    Article  Google Scholar 

  38. Senapati A, Sperry BW, Grodin JL, Kusunose K, Thavendiranathan P, Jaber W, Collier P, Hanna M, Popovic ZB, Phelan D (2016) Prognostic implication of relative regional strain ratio in cardiac amyloidosis. Heart 102:748–754. https://doi.org/10.1136/heartjnl-2015-308657

    Article  PubMed  Google Scholar 

  39. Phelan D, Collier P, Thavendiranathan P, Popovic ZB, Hanna M, Plana JC, Marwick TH, Thomas JD (2012) Relative apical sparing of longitudinal strain using two-dimensional speckle-tracking echocardiography is both sensitive and specific for the diagnosis of cardiac amyloidosis. Heart 98:1442–1448. https://doi.org/10.1136/heartjnl-2012-302353

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrike Herberg.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lagies, R., Udink ten Cate, F.E.A., Feldkötter, M. et al. Subclinical myocardial disease in patients with primary hyperoxaluria and preserved left ventricular ejection fraction: a two-dimensional speckle-tracking imaging study. Pediatr Nephrol 34, 2591–2600 (2019). https://doi.org/10.1007/s00467-019-04330-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-019-04330-7

Keywords

Navigation