Skip to main content

Advertisement

Log in

Dyslipidemia and cardiovascular health in childhood nephrotic syndrome

  • Educational Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Children with steroid-resistant nephrotic syndrome (SRNS) are exposed to multiple cardiovascular risk factors predisposing them to accelerated atherosclerosis. This risk is negligible in steroid-sensitive nephrotic syndrome, but a substantial proportion of children with SRNS progress to chronic kidney disease, exacerbating the already existing cardiovascular risk. While dyslipidemia is an established modifiable risk factor for cardiovascular disease in adults with NS, it is uncertain to what extent analogous risks exist for children. There is increasing evidence of accelerated atherosclerosis in children with persistently high lipid levels, especially in refractory NS. Abnormalities of lipid metabolism in NS include hypertriglyceridemia and hypercholesterolemia due to elevated apolipoprotein B-containing lipoproteins, decreased lipoprotein lipase and hepatic lipase activity, increased hepatic PCSK9 levels, and reduced hepatic uptake of high-density lipoprotein. Existing guidelines for the management of dyslipidemia in children may be adapted to target lower lipid levels in children with NS, but they will most likely require both lifestyle modifications and pharmacological therapy. While there is a lack of data from randomized controlled trials in children with NS demonstrating the benefit of lipid-lowering drugs, therapies including statins, bile acid sequestrants, fibrates, ezetimibe, and LDL apheresis have all been suggested and/or utilized. However, concerns with the use of lipid-lowering drugs in children include unclear side effect profiles and unknown long-term impacts on neurological development and puberty. The recent introduction of anti-PCSK9 monoclonal antibodies and other therapies targeted to the molecular mechanisms of lipid transport disrupted in NS holds promise for the future treatment of dyslipidemia in NS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Noone DG, Iijima K, Parekh R (2018) Idiopathic nephrotic syndrome in children. Lancet 392:61–74

    PubMed  Google Scholar 

  2. Sinha A, Bagga A (2012) Nephrotic syndrome. Indian J Pediatr 79:1045–1055

    PubMed  Google Scholar 

  3. Vaziri ND (2016) Disorders of lipid metabolism in nephrotic syndrome: mechanisms and consequences. Kidney Int 90:41–52

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Expert Panel on Integrated Guidelines for Cardiovascular Health Risk Reduction in Children and Adolescents; National Heart Lung, and Blood Institute (2011) Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: summary report. Pediatrics 128(Suppl 5):S213–S256

    Google Scholar 

  5. Liang K, Vaziri ND (1997) Gene expression of lipoprotein lipase in experimental nephrosis. J Lab Clin Med 130:387–394

    CAS  PubMed  Google Scholar 

  6. Vaziri ND, Yuan J, Ni Z, Nicholas SB, Norris KC (2012) Lipoprotein lipase deficiency in chronic kidney disease is accompanied by down-regulation of endothelial GPIHBP1 expression. Clin Exp Nephrol 16:238–243

    CAS  PubMed  Google Scholar 

  7. Vaziri ND (2016) HDL abnormalities in nephrotic syndrome and chronic kidney disease. Nat Rev Nephrol 12:37–47

    CAS  PubMed  Google Scholar 

  8. Deighan CJ, Caslake MJ, McConnell M, Boulton-Jones JM, Packard CJ (2000) Patients with nephrotic-range proteinuria have apolipoprotein C and E deficient VLDL1. Kidney Int 58:1238–1246

    CAS  PubMed  Google Scholar 

  9. Wang L, Shearer GC, Budamagunta MS, Voss JC, Molfino A, Kaysen GA (2012) Proteinuria decreases tissue lipoprotein receptor levels resulting in altered lipoprotein structure and increasing lipid levels. Kidney Int 82:990–999

    CAS  PubMed  Google Scholar 

  10. Vaziri ND (2003) Molecular mechanisms of lipid disorders in nephrotic syndrome. Kidney Int 63:1964–1976

    PubMed  Google Scholar 

  11. Clement LC, Mace C, Avila-Casado C, Joles JA, Kersten S, Chugh SS (2014) Circulating angiopoietin-like 4 links proteinuria with hypertriglyceridemia in nephrotic syndrome. Nat Med 20:37–46

    CAS  PubMed  Google Scholar 

  12. Zhu P, Goh YY, Chin HF, Kersten S, Tan NS (2012) Angiopoietin-like 4: a decade of research. Biosci Rep 32:211–219

    CAS  PubMed  Google Scholar 

  13. Robciuc MR, Naukkarinen J, Ortega-Alonso A, Tyynismaa H, Raivio T, Rissanen A, Kaprio J, Ehnholm C, Jauhiainen M, Pietilainen KH (2011) Serum angiopoietin-like 4 protein levels and expression in adipose tissue are inversely correlated with obesity in monozygotic twins. J Lipid Res 52:1575–1582

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhou Y, Zhang X, Chen L, Wu J, Dang H, Wei M, Fan Y, Zhang Y, Zhu Y, Wang N, Breyer MD, Guan Y (2008) Expression profiling of hepatic genes associated with lipid metabolism in nephrotic rats. Am J Physiol Ren Physiol 295:F662–F671

    CAS  Google Scholar 

  15. Vaziri ND, Sato T, Liang K (2003) Molecular mechanisms of altered cholesterol metabolism in rats with spontaneous focal glomerulosclerosis. Kidney Int 63:1756–1763

    CAS  PubMed  Google Scholar 

  16. Vaziri ND, Liang K (2002) Up-regulation of acyl-coenzyme A:cholesterol acyltransferase (ACAT) in nephrotic syndrome. Kidney Int 61:1769–1775

    CAS  PubMed  Google Scholar 

  17. Vaziri ND, Liang KH (1996) Down-regulation of hepatic LDL receptor expression in experimental nephrosis. Kidney Int 50:887–893

    CAS  PubMed  Google Scholar 

  18. Liu S, Vaziri ND (2014) Role of PCSK9 and IDOL in the pathogenesis of acquired LDL receptor deficiency and hypercholesterolemia in nephrotic syndrome. Nephrol Dial Transplant 29:538–543

    CAS  PubMed  Google Scholar 

  19. Kim CH, Kim HJ, Mitsuhashi M, Vaziri ND (2007) Hepatic tissue sterol regulatory element binding protein 2 and low-density lipoprotein receptor in nephrotic syndrome. Metabolism 56:1377–1382

    CAS  PubMed  Google Scholar 

  20. Jin K, Park BS, Kim YW, Vaziri ND (2014) Plasma PCSK9 in nephrotic syndrome and in peritoneal dialysis: a cross-sectional study. Am J Kidney Dis 63:584–589

    CAS  PubMed  Google Scholar 

  21. Wanner C, Rader D, Bartens W, Kramer J, Brewer HB, Schollmeyer P, Wieland H (1993) Elevated plasma lipoprotein(a) in patients with the nephrotic syndrome. Ann Intern Med 119:263–269

    CAS  PubMed  Google Scholar 

  22. Kronenberg F, Lingenhel A, Lhotta K, Rantner B, Kronenberg MF, Konig P, Thiery J, Koch M, von Eckardstein A, Dieplinger H (2004) Lipoprotein(a)- and low-density lipoprotein-derived cholesterol in nephrotic syndrome: impact on lipid-lowering therapy? Kidney Int 66:348–354

    CAS  PubMed  Google Scholar 

  23. Vaziri ND, Liang K, Parks JS (2001) Acquired lecithin-cholesterol acyltransferase deficiency in nephrotic syndrome. Am J Physiol Ren Physiol 280:F823–F828

    CAS  Google Scholar 

  24. Zhao Y, Marcel YL (1996) Serum albumin is a significant intermediate in cholesterol transfer between cells and lipoproteins. Biochemistry 35:7174–7180

    CAS  PubMed  Google Scholar 

  25. Moulin P, Appel GB, Ginsberg HN, Tall AR (1992) Increased concentration of plasma cholesteryl ester transfer protein in nephrotic syndrome: role in dyslipidemia. J Lipid Res 33:1817–1822

    CAS  PubMed  Google Scholar 

  26. Liang K, Vaziri ND (1999) Down-regulation of hepatic high-density lipoprotein receptor, SR-B1, in nephrotic syndrome. Kidney Int 56:621–626

    CAS  PubMed  Google Scholar 

  27. Vaziri ND, Navab K, Gollapudi P, Moradi H, Pahl MV, Barton CH, Fogelman AM, Navab M (2011) Salutary effects of hemodialysis on low-density lipoprotein proinflammatory and high-density lipoprotein anti-inflammatory properties in patient with end-stage renal disease. J Natl Med Assoc 103:524–533

    PubMed  PubMed Central  Google Scholar 

  28. Vaziri ND (2014) Role of dyslipidemia in impairment of energy metabolism, oxidative stress, inflammation and cardiovascular disease in chronic kidney disease. Clin Exp Nephrol 18:265–268

    CAS  PubMed  Google Scholar 

  29. McGill HC Jr, McMahan CA, Zieske AW, Sloop GD, Walcott JV, Troxclair DA, Malcom GT, Tracy RE, Oalmann MC, Strong JP (2000) Associations of coronary heart disease risk factors with the intermediate lesion of atherosclerosis in youth. The Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Research Group. Arterioscler Thromb Vasc Biol 20:1998–2004

    PubMed  Google Scholar 

  30. Newman WP 3rd, Freedman DS, Voors AW, Gard PD, Srinivasan SR, Cresanta JL, Williamson GD, Webber LS, Berenson GS (1986) Relation of serum lipoprotein levels and systolic blood pressure to early atherosclerosis. The Bogalusa Heart Study. N Engl J Med 314:138–144

    PubMed  Google Scholar 

  31. Davis PH, Dawson JD, Riley WA, Lauer RM (2001) Carotid intimal-medial thickness is related to cardiovascular risk factors measured from childhood through middle age: the Muscatine Study. Circulation 104:2815–2819

    CAS  PubMed  Google Scholar 

  32. Frontini MG, Srinivasan SR, Xu J, Tang R, Bond MG, Berenson GS (2008) Usefulness of childhood non-high density lipoprotein cholesterol levels versus other lipoprotein measures in predicting adult subclinical atherosclerosis: the Bogalusa Heart Study. Pediatrics 121:924–929

    PubMed  Google Scholar 

  33. Pletcher MJ, Bibbins-Domingo K, Liu K, Sidney S, Lin F, Vittinghoff E, Hulley SB (2010) Nonoptimal lipids commonly present in young adults and coronary calcium later in life: the CARDIA (Coronary Artery Risk Development in Young Adults) study. Ann Intern Med 153:137–146

    PubMed  PubMed Central  Google Scholar 

  34. Querfeld U (1999) Should hyperlipidemia in children with the nephrotic syndrome be treated? Pediatr Nephrol 13:77–84

    CAS  PubMed  Google Scholar 

  35. Kniazewska MH, Obuchowicz AK, Wielkoszynski T, Zmudzinska-Kitczak J, Urban K, Marek M, Witanowska J, Sieron-Stoltny K (2009) Atherosclerosis risk factors in young patients formerly treated for idiopathic nephrotic syndrome. Pediatr Nephrol 24:549–554

    PubMed  Google Scholar 

  36. Lechner BL, Bockenhauer D, Iragorri S, Kennedy TL, Siegel NJ (2004) The risk of cardiovascular disease in adults who have had childhood nephrotic syndrome. Pediatr Nephrol 19:744–748

    PubMed  Google Scholar 

  37. Tsukahara H, Haruki S, Hiraoka M, Hori C, Sudo M (1997) Persistent hypercholesterolaemia in frequently relapsing steroid-responsive nephrotic syndrome. J Paediatr Child Health 33:253–255

    CAS  PubMed  Google Scholar 

  38. Ordonez JD, Hiatt RA, Killebrew EJ, Fireman BH (1993) The increased risk of coronary heart disease associated with nephrotic syndrome. Kidney Int 44:638–642

    CAS  PubMed  Google Scholar 

  39. Joven J, Simo JM, Vilella E, Camps J, Espinel E, Villabona C (1995) Accumulation of atherogenic remnants and lipoprotein(a) in the nephrotic syndrome: relation to remission of proteinuria. Clin Chem 41:908–913

    CAS  PubMed  Google Scholar 

  40. Zhang Q, Zeng C, Fu Y, Cheng Z, Zhang J, Liu Z (2012) Biomarkers of endothelial dysfunction in patients with primary focal segmental glomerulosclerosis. Nephrology (Carlton) 17:338–345

    CAS  Google Scholar 

  41. Hooman N, Isa-Tafreshi R, Otukesh H, Mostafavi SH, Hallaji F (2013) Carotid artery function in children with idiopathic nephrotic syndrome. Nefrologia 33:650–656

    PubMed  Google Scholar 

  42. Candan C, Canpolat N, Gokalp S, Yildiz N, Turhan P, Tasdemir M, Sever L, Caliskan S (2014) Subclinical cardiovascular disease and its association with risk factors in children with steroid-resistant nephrotic syndrome. Pediatr Nephrol 29:95–102

    PubMed  Google Scholar 

  43. Fried LF, Orchard TJ, Kasiske BL (2001) Effect of lipid reduction on the progression of renal disease: a meta-analysis. Kidney Int 59:260–269

    CAS  PubMed  Google Scholar 

  44. Keane WF (1994) Lipids and the kidney. Kidney Int 46:910–920

    CAS  PubMed  Google Scholar 

  45. Warady BA, Abraham AG, Schwartz GJ, Wong CS, Munoz A, Betoko A, Mitsnefes M, Kaskel F, Greenbaum LA, Mak RH, Flynn J, Moxey-Mims MM, Furth S (2015) Predictors of rapid progression of glomerular and nonglomerular kidney disease in children and adolescents: the Chronic Kidney Disease in Children (CKiD) cohort. Am J Kidney Dis 65:878–888

    PubMed  PubMed Central  Google Scholar 

  46. Agrawal S, Zaritsky JJ, Fornoni A, Smoyer WE (2018) Dyslipidaemia in nephrotic syndrome: mechanisms and treatment. Nat Rev Nephrol 14:57–70

    CAS  PubMed  Google Scholar 

  47. El-Melegy NT, Mohamed NA, Sayed MM (2008) Oxidative modification of low-density lipoprotein in relation to dyslipidemia and oxidant status in children with steroid sensitive nephrotic syndrome. Pediatr Res 63:404–409

    CAS  PubMed  Google Scholar 

  48. Jackson SP, Calkin AC (2007) The clot thickens—oxidized lipids and thrombosis. Nat Med 13:1015–1016

    CAS  PubMed  Google Scholar 

  49. da Silva PM, Duarte JS, von Hafe P, Gil V, de Oliveira JN, de Sousa G (2018) Standardization of laboratory and lipid profile evaluation: a call for action with a special focus in 2016 ESC/EAS dyslipidaemia guidelines—full report. Atheroscler Suppl 31:e1–e12

    PubMed  Google Scholar 

  50. Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18:499–502

    CAS  PubMed  Google Scholar 

  51. Martin SS, Blaha MJ, Elshazly MB, Toth PP, Kwiterovich PO, Blumenthal RS, Jones SR (2013) Comparison of a novel method vs the Friedewald equation for estimating low-density lipoprotein cholesterol levels from the standard lipid profile. JAMA 310:2061–2068

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Sethna CB, Merchant K, Reyes A (2018) Cardiovascular disease risk in children with kidney disease. Semin Nephrol 38:298–313

    PubMed  Google Scholar 

  53. Obarzanek E, Kimm SY, Barton BA, Van Horn LL, Kwiterovich PO Jr, Simons-Morton DG, Hunsberger SA, Lasser NL, Robson AM, Franklin FA Jr, Lauer RM, Stevens VJ, Friedman LA, Dorgan JF, Greenlick MR, DISC Collaborative Research Group (2001) Long-term safety and efficacy of a cholesterol-lowering diet in children with elevated low-density lipoprotein cholesterol: seven-year results of the Dietary Intervention Study in Children (DISC). Pediatrics 107:256–264

    CAS  PubMed  Google Scholar 

  54. Niinikoski H, Lagstrom H, Jokinen E, Siltala M, Ronnemaa T, Viikari J, Raitakari OT, Jula A, Marniemi J, Nanto-Salonen K, Simell O (2007) Impact of repeated dietary counseling between infancy and 14 years of age on dietary intakes and serum lipids and lipoproteins: the STRIP study. Circulation 116:1032–1040

    CAS  PubMed  Google Scholar 

  55. Braamskamp MJ, Wijburg FA, Wiegman A (2012) Drug therapy of hypercholesterolaemia in children and adolescents. Drugs 72:759–772

    CAS  PubMed  Google Scholar 

  56. Catapano AL, Graham I, De Backer G, Wiklund O, Chapman MJ, Drexel H, Hoes AW, Jennings CS, Landmesser U, Pedersen TR, Reiner Z, Riccardi G, Taskinen MR, Tokgozoglu L, WMM V, Vlachopoulos C, Wood DA, Zamorano JL, Cooney MT, ESC Scientific Document Group (2016) 2016 ESC/EAS guidelines for the management of dyslipidaemias. Eur Heart J 37:2999–3058

    PubMed  Google Scholar 

  57. Flynn JT, Kaelber DC, Baker-Smith CM, Blowey D, Carroll AE, Daniels SR, de Ferranti SD, Dionne JM, Falkner B, Flinn SK, Gidding SS, Goodwin C, Leu MG, Powers ME, Rea C, Samuels J, Simasek M, Thaker VV, Urbina EM, Subcommittee On Sceening and Management of High Blood Pressure in Children (2017) Clinical practice guideline for screening and management of high blood pressure in children and adolescents. Pediatrics 140

  58. Watson AR, Coleman JE (1993) Dietary management in nephrotic syndrome. Arch Dis Child 69:179–180

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Tolfrey K, Jones AM, Campbell IG (2000) The effect of aerobic exercise training on the lipid-lipoprotein profile of children and adolescents. Sports Med 29:99–112

    CAS  PubMed  Google Scholar 

  60. Beck L, Bomback AS, Choi MJ, Holzman LB, Langford C, Mariani LH, Somers MJ, Trachtman H, Waldman M (2013) KDOQI US commentary on the 2012 KDIGO clinical practice guideline for glomerulonephritis. Am J Kidney Dis 62:403–441

    PubMed  Google Scholar 

  61. Rahul I, Krishnamurthy S, Satheesh S, Biswal N, Bobby Z, Lakshminarayanan S (2015) Brachial artery flow-mediated dilatation and carotid intima medial thickness in pediatric nephrotic syndrome: a cross-sectional case-control study. Clin Exp Nephrol 19:125–132

    CAS  PubMed  Google Scholar 

  62. Kusters DM, Avis HJ, de Groot E, Wijburg FA, Kastelein JJ, Wiegman A, Hutten BA (2014) Ten-year follow-up after initiation of statin therapy in children with familial hypercholesterolemia. JAMA 312:1055–1057

    PubMed  Google Scholar 

  63. Vuorio A, Kuoppala J, Kovanen PT, Humphries SE, Tonstad S, Wiegman A, Drogari E (2014) Statins for children with familial hypercholesterolemia. Cochrane Database Syst Rev:CD006401

  64. Dogra GK, Watts GF, Herrmann S, Thomas MA, Irish AB (2002) Statin therapy improves brachial artery endothelial function in nephrotic syndrome. Kidney Int 62:550–557

    CAS  PubMed  Google Scholar 

  65. Harada-Shiba M, Kastelein JJP, Hovingh GK, Ray KK, Ohtake A, Arisaka O, Ohta T, Okada T, Suganami H, Wiegman A (2018) Efficacy and safety of pitavastatin in children and adolescents with familial hypercholesterolemia in Japan and Europe. J Atheroscler Thromb 25:422–429

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Hedman M, Matikainen T, Fohr A, Lappi M, Piippo S, Nuutinen M, Antikainen M (2005) Efficacy and safety of pravastatin in children and adolescents with heterozygous familial hypercholesterolemia: a prospective clinical follow-up study. J Clin Endocrinol Metab 90:1942–1952

    CAS  PubMed  Google Scholar 

  67. Stefanutti C, Lucani G, Vivenzio A, Di Giacomo S (1999) Diet only and diet plus simvastatin in the treatment of heterozygous familial hypercholesterolemia in childhood. Drugs Exp Clin Res 25:23–28

    CAS  PubMed  Google Scholar 

  68. Hari P, Khandelwal P, Satpathy A, Hari S, Thergaonkar R, Lakshmy R, Sinha A, Bagga A (2018) Effect of atorvastatin on dyslipidemia and carotid intima-media thickness in children with refractory nephrotic syndrome: a randomized controlled trial. Pediatr Nephrol 33:2299–2309

    PubMed  Google Scholar 

  69. Coleman JE, Watson AR (1996) Hyperlipidaemia, diet and simvastatin therapy in steroid-resistant nephrotic syndrome of childhood. Pediatr Nephrol 10:171–174

    CAS  PubMed  Google Scholar 

  70. Sanjad SA, al-Abbad A, al-Shorafa S (1997) Management of hyperlipidemia in children with refractory nephrotic syndrome: the effect of statin therapy. J Pediatr 130:470–474

    CAS  PubMed  Google Scholar 

  71. Golper TA, Illingworth DR, Morris CD, Bennett WM (1989) Lovastatin in the treatment of multifactorial hyperlipidemia associated with proteinuria. Am J Kidney Dis 13:312–320

    CAS  PubMed  Google Scholar 

  72. Rabelink AJ, Hene RJ, Erkelens DW, Joles JA, Koomans HA (1988) Effects of simvastatin and cholestyramine on lipoprotein profile in hyperlipidaemia of nephrotic syndrome. Lancet 2:1335–1338

    CAS  PubMed  Google Scholar 

  73. Thomas ME, Harris KP, Ramaswamy C, Hattersley JM, Wheeler DC, Varghese Z, Williams JD, Walls J, Moorhead JF (1993) Simvastatin therapy for hypercholesterolemic patients with nephrotic syndrome or significant proteinuria. Kidney Int 44:1124–1129

    CAS  PubMed  Google Scholar 

  74. Rayner BL, Byrne MJ, van Zyl SR (1996) A prospective clinical trial comparing the treatment of idiopathic membranous nephropathy and nephrotic syndrome with simvastatin and diet, versus diet alone. Clin Nephrol 46:219–224

    CAS  PubMed  Google Scholar 

  75. Nishi S, Ubara Y, Utsunomiya Y, Okada K, Obata Y, Kai H, Kiyomoto H, Goto S, Konta T, Sasatomi Y, Sato Y, Nishino T, Tsuruya K, Furuichi K, Hoshino J, Watanabe Y, Kimura K, Matsuo S (2016) Evidence-based clinical practice guidelines for nephrotic syndrome 2014. Clin Exp Nephrol 20:342–370

    PubMed  PubMed Central  Google Scholar 

  76. Gipson DS, Massengill SF, Yao L, Nagaraj S, Smoyer WE, Mahan JD, Wigfall D, Miles P, Powell L, Lin JJ, Trachtman H, Greenbaum LA (2009) Management of childhood onset nephrotic syndrome. Pediatrics 124:747–757

    PubMed  Google Scholar 

  77. Kong X, Yuan H, Fan J, Li Z, Wu T, Jiang L (2013) Lipid-lowering agents for nephrotic syndrome. Cochrane Database Syst Rev: CD005425

  78. Olbricht CJ, Wanner C, Thiery J, Basten A (1999) Simvastatin in nephrotic syndrome. Simvastatin in Nephrotic Syndrome Study Group. Kidney Int Suppl 71:S113–S116

    CAS  PubMed  Google Scholar 

  79. Toto RD, Grundy SM, Vega GL (2000) Pravastatin treatment of very low density, intermediate density and low density lipoproteins in hypercholesterolemia and combined hyperlipidemia secondary to the nephrotic syndrome. Am J Nephrol 20:12–17

    CAS  PubMed  Google Scholar 

  80. Gheith OA, Sobh MA, Mohamed Kel S, El-Baz MA, El-Husseini F, Gazarin SS, Ahmed HA, Rasem MW, Amer GM (2002) Impact of treatment of dyslipidemia on renal function, fat deposits and scarring in patients with persistent nephrotic syndrome. Nephron 91:612–619

    CAS  PubMed  Google Scholar 

  81. Sharma M, Nand N, Aggarwal HK, Nand D (2004) Evaluation of effects of lovastatin on hypercholesterolaemia and renal functions in nephrotic syndrome. J Indian Acad Clin Med 5:143–146

    Google Scholar 

  82. Gheith O, Sheashaa H, Abdelsalam M, Shoeir Z, Sobh M (2009) Efficacy and safety of Monascus purpureus Went rice in children and young adults with secondary hyperlipidemia: a preliminary report. Eur J Intern Med 20:e57–e61

    CAS  PubMed  Google Scholar 

  83. Ksiazek J, Niemirska A, Lipka M, Grenda R (2006) Evaluation of arterial intima-media thickness (IMT) in children with idiopathic nephrotic syndrome—preliminary report. Przegl Lek 63(Suppl 3):205–207

    PubMed  Google Scholar 

  84. Mackie FE, Rosenberg AR, Harmer JA, Kainer G, Celermajer DS (2010) HMG CoA reductase inhibition and endothelial function in children with chronic kidney disease (CKD)—a pilot study. Acta Paediatr 99:457–459

    CAS  PubMed  Google Scholar 

  85. Braamskamp MJ, Kusters DM, Avis HJ, Smets EM, Wijburg FA, Kastelein JJ, Wiegman A, Hutten BA (2015) Long-term statin treatment in children with familial hypercholesterolemia: more insight into tolerability and adherence. Paediatr Drugs 17:159–166

    PubMed  PubMed Central  Google Scholar 

  86. McCrindle BW, Helden E, Cullen-Dean G, Conner WT (2002) A randomized crossover trial of combination pharmacologic therapy in children with familial hyperlipidemia. Pediatr Res 51:715–721

    CAS  PubMed  Google Scholar 

  87. Tonstad S, Sivertsen M, Aksnes L, Ose L (1996) Low dose colestipol in adolescents with familial hypercholesterolaemia. Arch Dis Child 74:157–160

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Tonstad S, Knudtzon J, Sivertsen M, Refsum H, Ose L (1996) Efficacy and safety of cholestyramine therapy in peripubertal and prepubertal children with familial hypercholesterolemia. J Pediatr 129:42–49

    CAS  PubMed  Google Scholar 

  89. McCrindle BW, O’Neill MB, Cullen-Dean G, Helden E (1997) Acceptability and compliance with two forms of cholestyramine in the treatment of hypercholesterolemia in children: a randomized, crossover trial. J Pediatr 130:266–273

    CAS  PubMed  Google Scholar 

  90. Valeri A, Gelfand J, Blum C, Appel GB (1986) Treatment of the hyperlipidemia of the nephrotic syndrome: a controlled trial. Am J Kidney Dis 8:388–396

    CAS  PubMed  Google Scholar 

  91. Stein EA, Marais AD, Szamosi T, Raal FJ, Schurr D, Urbina EM, Hopkins PN, Karki S, Xu J, Misir S, Melino M (2010) Colesevelam hydrochloride: efficacy and safety in pediatric subjects with heterozygous familial hypercholesterolemia. J Pediatr 156(231–236):e231–e233

    Google Scholar 

  92. Clauss S, Wai KM, Kavey RE, Kuehl K (2009) Ezetimibe treatment of pediatric patients with hypercholesterolemia. J Pediatr 154:869–872

    CAS  PubMed  Google Scholar 

  93. van der Graaf A, Cuffie-Jackson C, Vissers MN, Trip MD, Gagne C, Shi G, Veltri E, Avis HJ, Kastelein JJ (2008) Efficacy and safety of coadministration of ezetimibe and simvastatin in adolescents with heterozygous familial hypercholesterolemia. J Am Coll Cardiol 52:1421–1429

    PubMed  Google Scholar 

  94. Wheeler KA, West RJ, Lloyd JK, Barley J (1985) Double blind trial of bezafibrate in familial hypercholesterolaemia. Arch Dis Child 60:34–37

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Matsunaga A, Furuyama M, Hashimoto T, Toyoda K, Ogino D, Hayasaka K (2009) Improvement of nephrotic syndrome by intensive lipid-lowering therapy in a patient with lipoprotein glomerulopathy. Clin Exp Nephrol 13:659–662

    CAS  PubMed  Google Scholar 

  96. Smalley CM, Goldberg SJ (2008) A pilot study in the efficacy and safety of gemfibrozil in a pediatric population. J Clin Lipidol 2:106–111

    PubMed  Google Scholar 

  97. Buyukcelik M, Anarat A, Bayazit AK, Noyan A, Ozel A, Anarat R, Aydingulu H, Dikmen N (2002) The effects of gemfibrozil on hyperlipidemia in children with persistent nephrotic syndrome. Turk J Pediatr 44:40–44

    PubMed  Google Scholar 

  98. Colletti RB, Neufeld EJ, Roff NK, McAuliffe TL, Baker AL, Newburger JW (1993) Niacin treatment of hypercholesterolemia in children. Pediatrics 92:78–82

    CAS  PubMed  Google Scholar 

  99. Goldberg RB, Sabharwal AK (2008) Fish oil in the treatment of dyslipidemia. Curr Opin Endocrinol Diabetes Obes 15:167–174

    CAS  PubMed  Google Scholar 

  100. de Ferranti SD, Milliren CE, Denhoff ER, Steltz SK, Selamet Tierney ES, Feldman HA, Osganian SK (2014) Using high-dose omega-3 fatty acid supplements to lower triglyceride levels in 10- to 19-year-olds. Clin Pediatr (Phila) 53:428–438

    Google Scholar 

  101. Engler MM, Engler MB, Malloy MJ, Paul SM, Kulkarni KR, Mietus-Snyder ML (2005) Effect of docosahexaenoic acid on lipoprotein subclasses in hyperlipidemic children (the EARLY study). Am J Cardiol 95:869–871

    CAS  PubMed  Google Scholar 

  102. Chongviriyaphan N, Tapaneya-Olarn C, Suthutvoravut U, Karnchanachumpol S, Chantraruksa V (1999) Effects of tuna fish oil on hyperlipidemia and proteinuria in childhood nephrotic syndrome. J Med Assoc Thai 82(Suppl 1):S122–S128

  103. Moriarty PM (2015) Lipoprotein apheresis: present and future uses. Curr Opin Lipidol 26:544–552

    CAS  PubMed  Google Scholar 

  104. Wang A, Richhariya A, Gandra SR, Calimlim B, Kim L, Quek RG, Nordyke RJ, Toth PP (2016) Systematic review of low-density lipoprotein cholesterol apheresis for the treatment of familial hypercholesterolemia. J Am Heart Assoc 5

  105. Hattori M, Chikamoto H, Akioka Y, Nakakura H, Ogino D, Matsunaga A, Fukazawa A, Miyakawa S, Khono M, Kawaguchi H, Ito K (2003) A combined low-density lipoprotein apheresis and prednisone therapy for steroid-resistant primary focal segmental glomerulosclerosis in children. Am J Kidney Dis 42:1121–1130

    PubMed  Google Scholar 

  106. Muso E, Mune M, Hirano T, Hattori M, Kimura K, Watanabe T, Yokoyama H, Sato H, Uchida S, Wada T, Shoji T, Yuzawa Y, Takemura T, Sugiyama S, Nishizawa Y, Ogahara S, Yorioka N, Sakai S, Ogura Y, Yukawa S, Iino Y, Imai E, Matsuo S, Saito T (2015) Immediate therapeutic efficacy of low-density lipoprotein apheresis for drug-resistant nephrotic syndrome: evidence from the short-term results from the POLARIS study. Clin Exp Nephrol 19:379–386

    CAS  PubMed  Google Scholar 

  107. Muso E, Mune M, Hirano T, Hattori M, Kimura K, Watanabe T, Yokoyama H, Sato H, Uchida S, Wada T, Shoji T, Takemura T, Yuzawa Y, Ogahara S, Sugiyama S, Iino Y, Sakai S, Ogura Y, Yukawa S, Nishizawa Y, Yorioka N, Imai E, Matsuo S, Saito T (2015) A prospective observational survey on the long-term effect of LDL apheresis on drug-resistant nephrotic syndrome. Nephron Extra 5:58–66

    PubMed  PubMed Central  Google Scholar 

  108. Hori M, Ishihara M, Yuasa Y, Makino H, Yanagi K, Tamanaha T, Kishimoto I, Kujiraoka T, Hattori H, Harada-Shiba M (2015) Removal of plasma mature and furin-cleaved proprotein convertase subtilisin/kexin 9 by low-density lipoprotein-apheresis in familial hypercholesterolemia: development and application of a new assay for PCSK9. J Clin Endocrinol Metab 100:E41–E49

    CAS  PubMed  Google Scholar 

  109. Haas ME, Levenson AE, Sun X, Liao WH, Rutkowski JM, de Ferranti SD, Schumacher VA, Scherer PE, Salant DJ, Biddinger SB (2016) The role of proprotein convertase subtilisin/kexin type 9 in nephrotic syndrome-associated hypercholesterolemia. Circulation 134:61–72

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Prescott WA Jr, Streetman DA, Streetman DS (2004) The potential role of HMG-CoA reductase inhibitors in pediatric nephrotic syndrome. Ann Pharmacother 38:2105–2114

    CAS  PubMed  Google Scholar 

  111. Robinson JG, Farnier M, Krempf M, Bergeron J, Luc G, Averna M, Stroes ES, Langslet G, Raal FJ, El Shahawy M, Koren MJ, Lepor NE, Lorenzato C, Pordy R, Chaudhari U, Kastelein JJ, Oddysey Long Term Investigators (2015) Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N Engl J Med 372:1489–1499

    CAS  PubMed  Google Scholar 

  112. Sabatine MS, Giugliano RP, Wiviott SD, Raal FJ, Blom DJ, Robinson J, Ballantyne CM, Somaratne R, Legg J, Wasserman SM, Scott R, Koren MJ, Stein EA, Open-Label Study of Long-Term Evaluation against LDL Cholesterol (OSLER) Investigators (2015) Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N Engl J Med 372:1500–1509

    CAS  PubMed  Google Scholar 

  113. Awanami Y, Fukuda M, Nonaka Y, Takashima T, Matsumoto K, Yamasaki M, Miyazono M, Ikeda Y (2017) Successful treatment of a patient with refractory nephrotic syndrome with PCSK9 inhibitors: a case report. BMC Nephrol 18:221

    PubMed  PubMed Central  Google Scholar 

  114. Zheng-Lin B, Ortiz A (2018) Lipid management in chronic kidney disease: systematic review of PCSK9 targeting. Drugs 78:215–229

    PubMed  Google Scholar 

  115. Wiegman A, Hutten BA (2017) Novel pharmacological treatments for children and adolescents with heterozygous familial hypercholesterolemia. Expert Rev Clin Pharmacol 10:919–921

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Hari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Answers 1. a, b, c; 2. a, b, d; 3. a; 4. a, c, d; 5. a, b, c

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hari, P., Khandelwal, P. & Smoyer, W.E. Dyslipidemia and cardiovascular health in childhood nephrotic syndrome. Pediatr Nephrol 35, 1601–1619 (2020). https://doi.org/10.1007/s00467-019-04301-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-019-04301-y

Keywords

Navigation