Skip to main content

Kidney biopsy findings in children with sickle cell disease: a Midwest Pediatric Nephrology Consortium study

Abstract

Background

Renal damage is a progressive complication of sickle cell disease (SCD). Microalbuminuria is common in children with SCD, while a smaller number of children have more severe renal manifestations necessitating kidney biopsy. There is limited information on renal biopsy findings in children with SCD and subsequent management and outcome.

Methods

This is a multicenter retrospective analysis of renal biopsy findings and clinical outcomes in children and adolescents with SCD. We included children and adolescents (age ≤ 20 years) with SCD who had a kidney biopsy performed at a pediatric nephrology unit. The clinical indication for biopsy, biopsy findings, subsequent treatments, and outcomes were analyzed.

Results

Thirty-six SCD patients (ages 4–19 years) were identified from 14 centers with a median follow-up of 2.6 years (0.4–10.4 years). The indications for biopsy were proteinuria (92%) and elevated creatinine (30%). All biopsies had abnormal findings, including mesangial hypercellularity (75%), focal segmental glomerulosclerosis (30%), membranoproliferative glomerulonephritis (16%), and thrombotic microangiopathy (2%). There was increased use of hydroxyurea, angiotensin-converting-enzyme inhibitors, and angiotensin receptor blockers following renal biopsy. At last follow-up, 3 patients were deceased, 2 developed insulin-dependent diabetes mellitus, 6 initiated chronic hemodialysis, 1 received a bone marrow transplant, and 1 received a kidney transplant.

Conclusions

Renal biopsies, while not commonly performed in children with SCD, were universally abnormal. Outcomes were poor in this cohort of patients despite a variety of post-biopsy interventions. Effective early intervention to prevent chronic kidney disease (CKD) is needed to reduce morbidity and mortality in children with SCD.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Ataga KI, Derebail VK, Archer DR (2014) The glomerulopathy of sickle cell disease. Am J Hematol 89:907–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Drawz P, Ayyappan S, Nouraie M, Saraf S, Gordeuk V, Hostetter T, Gladwin MT, Little J (2016) Kidney disease among patients with sickle cell disease, hemoglobin SS and SC. Clin J Am Soc Nephrol 11:207–215

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    Alvarez O, Lopez-Mitnik G, Zilleruelo G (2008) Short-term follow-up of patients with sickle cell disease and albuminuria. Pediatr Blood Cancer 50:1236–1239

    Article  PubMed  Google Scholar 

  4. 4.

    McPherson Yee M, Jabbar SF, Osunkwo I, Clement L, Lane PA, Eckman JR, Guasch A (2011) Chronic kidney disease and albuminuria in children with sickle cell disease. Clin J Am Soc Nephrol 6:2628–2633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Guasch A, Navarrete J, Nass K, Zayas CF (2006) Glomerular involvement in adults with sickle cell hemoglobinopathies: prevalence and clinical correlates of progressive renal failure. J Am Soc Nephrol 17:2228–2235

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Huang E, Parke C, Mehrnia A, Kamgar M, Pham PT, Danovitch G, Bunnapradist S (2013) Improved survival among sickle cell kidney transplant recipients in the recent era. Nephrol Dial Transplant 28:1039–1046

    Article  PubMed  Google Scholar 

  7. 7.

    Platt OS, Brambilla DJ, Rosse WF, Milner PF, Castro O, Steinberg MH, Klug PP (1994) Mortality in sickle cell disease. Life expectancy and risk factors for early death. N Engl J Med 330:1639–1644

    Article  CAS  Google Scholar 

  8. 8.

    Powars DR, Chan LS, Hiti A, Ramicone E, Johnson C (2005) Outcome of sickle cell anemia: a 4-decade observational study of 1056 patients. Medicine (Baltimore) 84:363–376

    Article  Google Scholar 

  9. 9.

    Tejani A, Phadke K, Adamson O, Nicastri A, Chen CK, Sen D (1985) Renal lesions in sickle cell nephropathy in children. Nephron 39:352–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Bhathena DB, Sondheimer JH (1991) The glomerulopathy of homozygous sickle hemoglobin (SS) disease: morphology and pathogenesis. J Am Soc Nephrol 1:1241–1252

    CAS  PubMed  Google Scholar 

  11. 11.

    Elfenbein IB, Patchefsky A, Schwartz W, Weinstein AG (1974) Pathology of the glomerulus in sickle cell anemia with and without nephrotic syndrome. Am J Pathol 77:357–374

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Falk RJ, Scheinman J, Phillips G, Orringer E, Johnson A, Jennette JC (1992) Prevalence and pathologic features of sickle cell nephropathy and response to inhibition of angiotensin-converting enzyme. N Engl J Med 326:910–915

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Maigne G, Ferlicot S, Galacteros F, Belenfant X, Ulinski T, Niaudet P, Ronco P, Godeau B, Durrbach A, Sahali S, Lang P, Lambotte O, Audard V (2010) Glomerular lesions in patients with sickle cell disease. Medicine (Baltimore) 89:18–27

    Article  Google Scholar 

  14. 14.

    Yawn BP, Buchanan GR, Afenyi-Annan AN, Ballas SK, Hassell KL, James AH, Jordan L, Lanzkron SM, Lottenberg R, Savage WJ, Tanabe PJ, Ware RE, Murad MH, Goldsmith JC, Ortiz E, Fulwood R, Horton A, John-Sowah J (2014) Management of sickle cell disease: summary of the 2014 evidence-based report by expert panel members. JAMA 312:1033–1048

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Quinn CT, Saraf SL, Gordeuk VR, Fitzhugh CD, Creary SE, Bodas P, George A, Raj AB, Nero AC, Terrell CE, McCord L, Lane A, Ackerman HC, Yang Y, Niss O, Taylor MD, Devarajan P, Malik P (2017) Losartan for the nephropathy of sickle cell anemia: a phase-2, multicenter trial. Am J Hematol 92:E520–E528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Yee ME, Lane PA, Archer DR, Joiner CH, Eckman JR, Guasch A (2018) Losartan therapy decreases albuminuria with stable glomerular filtration and permselectivity in sickle cell anemia. Blood Cells Mol Dis 69:65–70

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Wang WC, Ware RE, Miller ST, Iyer RV, Casella JF, Minniti CP, Rana S, Thornburg CD, Rogers ZR, Kalpatthi RV, Barredo JC, Brown RC, Sarnaik SA, Howard TH, Wynn LW, Kutlar A, Armstrong FD, Files BA, Goldsmith JC, Waclawiw MA, Huang X, Thompson BW (2011) Hydroxycarbamide in very young children with sickle-cell anaemia: a multicentre, randomised, controlled trial (BABY HUG). Lancet 377:1663–1672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Voskaridou E, Christoulas D, Bilalis A, Plata E, Varvagiannis K, Stamatopoulos G, Sinopoulou K, Balassopoulou A, Loukopoulos D, Terpos E (2010) The effect of prolonged administration of hydroxyurea on morbidity and mortality in adult patients with sickle cell syndromes: results of a 17-year, single-center trial (LaSHS). Blood 115:2354–2363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Steinberg MH, McCarthy WF, Castro O, Ballas SK, Armstrong FD, Smith W, Ataga K, Swerdlow P, Kutlar A, DeCastro L, Waclawiw MA (2010) The risks and benefits of long-term use of hydroxyurea in sickle cell anemia: a 17.5 year follow-up. Am J Hematol 85:403–408

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Hankins JS, Helton KJ, McCarville MB, Li CS, Wang WC, Ware RE (2008) Preservation of spleen and brain function in children with sickle cell anemia treated with hydroxyurea. Pediatr Blood Cancer 50:293–297

    Article  PubMed  Google Scholar 

  21. 21.

    Bartolucci P, Habibi A, Stehle T, Di Liberto G, Rakotoson MG, Gellen-Dautremer J, Loric S, Moutereau S, Sahali D, Wagner-Ballon O, Remy P, Lang P, Grimbert P, Audureau E, Godeau B, Galacteros F, Audard V (2016) Six months of hydroxyurea reduces albuminuria in patients with sickle cell disease. J Am Soc Nephrol 27:1847–1853

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Laurin LP, Nachman PH, Desai PC, Ataga KI, Derebail VK (2014) Hydroxyurea is associated with lower prevalence of albuminuria in adults with sickle cell disease. Nephrol Dial Transplant 29:1211–1218

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Tehseen S, Joiner C, Lane PA, Yee ME (2017) Changes in urine albumin to creatinine ratio with the initiation of hydroxyurea therapy among children and adolescents with sickle cell disease. Pediatr Blood Cancer. https://doi.org/10.1002/pbc.26665

  24. 24.

    Schwartz GJ, Munoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, Furth SL (2009) New equations to estimate GFR in children with CKD. J Am Soc Nephrol 20:629–637

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Levey AS, Eckardt KU, Tsukamoto Y, Levin A, Coresh J, Rossert J, De Zeeuw D, Hostetter TH, Lameire N, Eknoyan G (2005) Definition and classification of chronic kidney disease: a position statement from kidney disease: improving global outcomes (KDIGO). Kidney Int 67:2089–2100

    Article  PubMed  Google Scholar 

  26. 26.

    Pardo V, Strauss J, Kramer H, Ozawa T, McIntosh RM (1975) Nephropathy associated with sickle cell anemia: an autologous immune complex nephritis. II Clinicopathologic study of seven patients. Am J Med 59:650–659

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Bakir AA, Hathiwala SC, Ainis H, Hryhorczuk DO, Rhee HL, Levy PS, Dunea G (1987) Prognosis of the nephrotic syndrome in sickle glomerulopathy. A retrospective study. Am J Nephrol 7:110–115

    Article  CAS  PubMed  Google Scholar 

  28. 28.

    Wigfall D (2000) Prevalence and clinical correlates of glomerulopathy in children with sickle cell disease. J Pediatr 136:749–753

    CAS  PubMed  Google Scholar 

  29. 29.

    Balkaran B, Char G, Morris JS, Thomas PW, Serjeant BE, Serjeant GR (1992) Stroke in a cohort of patients with homozygous sickle cell disease. J Pediatr 120:360–366

    Article  CAS  PubMed  Google Scholar 

  30. 30.

    Ohene-Frempong K, Weiner SJ, Sleeper LA, Miller ST, Embury S, Moohr JW, Wethers DL, Pegelow CH, Gill FM (1998) Cerebrovascular accidents in sickle cell disease: rates and risk factors. Blood 91:288–294

    CAS  PubMed  Google Scholar 

  31. 31.

    Castro O, Brambilla DJ, Thorington B, Reindorf CA, Scott RB, Gillette P, Vera JC, Levy PS (1994) The acute chest syndrome in sickle cell disease: incidence and risk factors. The cooperative study of sickle cell disease. Blood 84:643–649

    CAS  PubMed  Google Scholar 

  32. 32.

    Wierenga KJ, Pattison JR, Brink N, Griffiths M, Miller M, Shah DJ, Williams W, Serjeant BE, Serjeant GR (1995) Glomerulonephritis after human parvovirus infection in homozygous sickle-cell disease. Lancet 346:475–476

    Article  CAS  PubMed  Google Scholar 

  33. 33.

    Moudgil A, Nast CC, Bagga A, Wei L, Nurmamet A, Cohen AH, Jordan SC, Toyoda M (2001) Association of parvovirus B19 infection with idiopathic collapsing glomerulopathy. Kidney Int 59:2126–2133

    Article  CAS  PubMed  Google Scholar 

  34. 34.

    Serjeant GR, Serjeant BE, Thomas PW, Anderson MJ, Patou G, Pattison JR (1993) Human parvovirus infection in homozygous sickle cell disease. Lancet 341:1237–1240

    Article  CAS  PubMed  Google Scholar 

  35. 35.

    Besse W, Mansour S, Jatwani K, Nast CC, Brewster UC (2016) Collapsing glomerulopathy in a young woman with APOL1 risk alleles following acute parvovirus B19 infection: a case report investigation. BMC Nephrol 17:125

    Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Ashley-Koch AE, Okocha EC, Garrett ME, Soldano K, De Castro LM, Jonassaint JC, Orringer EP, Eckman JR, Telen MJ (2011) MYH9 and APOL1 are both associated with sickle cell disease nephropathy. Br J Haematol 155:386–394

    Article  CAS  PubMed  Google Scholar 

  37. 37.

    Frimat M, Tabarin F, Dimitrov JD, Poitou C, Halbwachs-Mecarelli L, Fremeaux-Bacchi V, Roumenina LT (2013) Complement activation by heme as a secondary hit for atypical hemolytic uremic syndrome. Blood 122:282–292

    Article  CAS  Google Scholar 

  38. 38.

    Manci EA, Hillery CA, Bodian CA, Zhang ZG, Lutty GA, Coller BS (2006) Pathology of Berkeley sickle cell mice: similarities and differences with human sickle cell disease. Blood 107:1651–1658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Aygun B, Mortier NA, Smeltzer MP, Hankins JS, Ware RE (2011) Glomerular hyperfiltration and albuminuria in children with sickle cell anemia. Pediatr Nephrol 26:1285–1290

    Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Fitzhugh CD, Wigfall DR, Ware RE (2005) Enalapril and hydroxyurea therapy for children with sickle nephropathy. Pediatr Blood Cancer 45:982–985

    Article  PubMed  Google Scholar 

  41. 41.

    Zahr RS, Hankins JS, Kang G, Li C, Wang WC, Lebensburger J, Estepp JH (2018) Hydroxyurea prevents onset and progression of albuminuria in children with sickle cell anemia. Am J Hematol 94:E27–E29

    Article  CAS  PubMed  Google Scholar 

  42. 42.

    Greenberg JH, Coca S, Parikh CR (2014) Long-term risk of chronic kidney disease and mortality in children after acute kidney injury: a systematic review. BMC Nephrol 15:184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Baddam S, Aban I, Hilliard L, Howard T, Askenazi D, Lebensburger JD (2017) Acute kidney injury during a pediatric sickle cell vaso-occlusive pain crisis. Pediatr Nephrol 32:1451–1456

    Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Lebensburger JD, Palabindela P, Howard TH, Feig DI, Aban I, Askenazi DJ (2016) Prevalence of acute kidney injury during pediatric admissions for acute chest syndrome. Pediatr Nephrol 31:1363–1368

    Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Allon M (1990) Renal abnormalities in sickle cell disease. Arch Intern Med 150:501–504

    Article  CAS  PubMed  Google Scholar 

  46. 46.

    Selistre L, De Souza V, Cochat P, Antonello IC, Hadj-Aissa A, Ranchin B, Dolomanova O, Varennes A, Beyerle F, Bacchetta J, Dubourg L (2012) GFR estimation in adolescents and young adults. J Am Soc Nephrol 23:989–996

    Article  CAS  PubMed  Google Scholar 

  47. 47.

    Ng DK, Schwartz GJ, Schneider MF, Furth SL, Warady BA (2018) Combination of pediatric and adult formulas yield valid glomerular filtration rate estimates in young adults with a history of pediatric chronic kidney disease. Kidney Int 94:170–177

    Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Yee MEM, Lane PA, Archer DR, Joiner CH, Eckman JR, Guasch A (2017) Estimation of glomerular filtration rate using serum cystatin C and creatinine in adults with sickle cell anemia. Am J Hematol 92:E598–E599

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rima S. Zahr.

Ethics declarations

Each of the 14 pediatric nephrology centers received approval from their local Institutional Review Boards for this retrospective study.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zahr, R.S., Yee, M.E., Weaver, J. et al. Kidney biopsy findings in children with sickle cell disease: a Midwest Pediatric Nephrology Consortium study. Pediatr Nephrol 34, 1435–1445 (2019). https://doi.org/10.1007/s00467-019-04237-3

Download citation

Keywords

  • Children
  • Proteinuria
  • Glomerulopathy
  • Glomerular hyperfiltration
  • Chronic kidney disease
  • Sickle cell disease