Advertisement

Pediatric Nephrology

, Volume 34, Issue 6, pp 965–973 | Cite as

Potential use of stem cells as a therapy for cystinosis

  • Celine J. Rocca
  • Stephanie CherquiEmail author
Review

Abstract

Cystinosis is an autosomal recessive metabolic disease that belongs to the family of lysosomal storage disorders (LSDs). Initial symptoms of cystinosis correspond to the renal Fanconi syndrome. Patients then develop chronic kidney disease and multi-organ failure due to accumulation of cystine in all tissue compartments. LSDs are commonly characterized by a defective activity of lysosomal enzymes. Hematopoietic stem and progenitor cell (HSPC) transplantation is a treatment option for several LSDs based on the premise that their progeny will integrate in the affected tissues and secrete the functional enzyme, which will be recaptured by the surrounding deficient cells and restore physiological activity. However, in the case of cystinosis, the defective protein is a transmembrane lysosomal protein, cystinosin. Thus, cystinosin cannot be secreted, and yet, we showed that HSPC transplantation can rescue disease phenotype in the mouse model of cystinosis. In this review, we are describing a different mechanism by which HSPC-derived cells provide cystinosin to diseased cells within tissues, and how HSPC transplantation could be an effective one-time treatment to treat cystinosis but also other LSDs associated with a lysosomal transmembrane protein dysfunction.

Keywords

Cystinosis Lysosomal storage disorders Hematopoietic stem and progenitor cells Gene therapy Lysosomal transfer Tunneling nanotubes 

Notes

Acknowledgments

We thank Adrien Rocca for the design of the figures.

Funding information

This work was supported by the National Institute of Health (NIH) RO1-DK090058, the Cystinosis Research Foundation, and the California Institute of Regenerative Medicine (CIRM, CLIN-09230).

Compliance with ethical standards

Competing interests

S.C. is a Scientific Board member and member of the Board of Trustees of the Cystinosis Research Foundation. S.C. is a cofounder, shareholder, and a member of both the scientific board and board of directors of GenStem Therapeutics Inc. The terms of this arrangement have been reviewed and approved by the University of California San Diego in accordance with its conflict of interest policies.

References

  1. 1.
    Pastores GM, Barnett NL (2005) Current and emerging therapies for the lysosomal storage disorders. Expert Opin Emerg Drugs 10:891–902CrossRefGoogle Scholar
  2. 2.
    Hasilik A, Klein U, Waheed A, Strecker G, von Figura K (1980) Phosphorylated oligosaccharides in lysosomal enzymes: identification of alpha-N-acetylglucosamine(1)phospho(6)mannose diester groups. Proc Natl Acad Sci U S A 77:7074–7078CrossRefGoogle Scholar
  3. 3.
    Ratko TA, Marbella A, Godfrey S, Aronson N (2013) Enzyme-replacement therapies for lysosomal storage diseases, Rockville, MD. Agency for Healthcare Research and Quality (US); Report No.: 12(13)-EHC154-EFGoogle Scholar
  4. 4.
    Enns GM, Huhn SL (2008) Central nervous system therapy for lysosomal storage disorders. Neurosurg Focus 24:E12CrossRefGoogle Scholar
  5. 5.
    Ruivo R, Anne C, Sagne C, Gasnier B (2009) Molecular and cellular basis of lysosomal transmembrane protein dysfunction. Biochim Biophys Acta 1793:636–649CrossRefGoogle Scholar
  6. 6.
    Cherqui S, Kalatzis V, Trugnan G, Antignac C (2001) The targeting of cystinosin to the lysosomal membrane requires a tyrosine-based signal and a novel sorting motif. J Biol Chem 276:13314–13321CrossRefGoogle Scholar
  7. 7.
    Kalatzis V, Cherqui S, Antignac C, Gasnier B (2001) Cystinosin, the protein defective in cystinosis, is a H(+)-driven lysosomal cystine transporter. EMBO J 20:5940–5949CrossRefGoogle Scholar
  8. 8.
    Town M, Jean G, Cherqui S, Attard M, Forestier L, Whitmore SA, Callen DF, Gribouval O, Broyer M, Bates GP, van't Hoff W, Antignac C (1998) A novel gene encoding an integral membrane protein is mutated in nephropathic cystinosis. Nat Genet 18:319–324CrossRefGoogle Scholar
  9. 9.
    Anikster Y, Shotelersuk V, Gahl WA (1999) CTNS mutations in patients with cystinosis. Hum Mutat 14:454–458CrossRefGoogle Scholar
  10. 10.
    Attard M, Jean G, Forestier L, Cherqui S, van't Hoff W, Broyer M, Antignac C, Town M (1999) Severity of phenotype in cystinosis varies with mutations in the CTNS gene: predicted effect on the model of cystinosin. Hum Mol Genet 8:2507–2514CrossRefGoogle Scholar
  11. 11.
    Gahl WA, Thoene JG, Schneider JA (2002) Cystinosis. New Engl J Med 347:111–121CrossRefGoogle Scholar
  12. 12.
    Goldman H, Scriver CR, Aaron K, Delvin E, Canlas Z (1971) Adolescent cystinosis: comparisons with infantile and adult forms. Pediatrics 47:979–988Google Scholar
  13. 13.
    Cogan DG, Kuwabara T, Kinoshita J, Sheehan L, Merola L (1957) Cystinosis in an adult. J Am Med Assoc 164:394–396CrossRefGoogle Scholar
  14. 14.
    Emma F, Nesterova G, Langman C, Labbe A, Cherqui S, Goodyer P, Janssen MC, Greco M, Topaloglu R, Elenberg E, Dohil R, Trauner D, Antignac C, Cochat P, Kaskel F, Servais A, Wuhl E, Niaudet P, Van't Hoff W, Gahl W, Levtchenko E (2014) Nephropathic cystinosis: an international consensus document. Nephrol Dial Transplant 29(Suppl 4):iv87–iv94CrossRefGoogle Scholar
  15. 15.
    Brodin-Sartorius A, Tete MJ, Niaudet P, Antignac C, Guest G, Ottolenghi C, Charbit M, Moyse D, Legendre C, Lesavre P, Cochat P, Servais A (2012) Cysteamine therapy delays the progression of nephropathic cystinosis in late adolescents and adults. Kidney Int 81:179–189CrossRefGoogle Scholar
  16. 16.
    Cherqui S (2012) Cysteamine therapy: a treatment for cystinosis, not a cure. Kidney Int 81:127–129CrossRefGoogle Scholar
  17. 17.
    Gahl WA, Balog JZ, Kleta R (2007) Nephropathic cystinosis in adults: natural history and effects of oral cysteamine therapy. Ann Intern Med 147:242–250CrossRefGoogle Scholar
  18. 18.
    Biffi A (2017) Hematopoietic stem cell gene therapy for storage disease: current and new indications. Mol Ther 25:1155–1162CrossRefGoogle Scholar
  19. 19.
    Krivit W (2004) Allogeneic stem cell transplantation for the treatment of lysosomal and peroxisomal metabolic diseases. Springer Semin Immunopathol 26:119–132CrossRefGoogle Scholar
  20. 20.
    Caniglia M, Rana I, Pinto RM, Fariello G, Caruso R, Angioni A, Dionisi Vici C, Sabetta G, De Rossi G (2002) Allogeneic bone marrow transplantation for infantile globoid-cell leukodystrophy (Krabbe’s disease). Pediatr Transplant 6:427–431CrossRefGoogle Scholar
  21. 21.
    Escolar ML, Poe MD, Provenzale JM, Richards KC, Allison J, Wood S, Wenger DA, Pietryga D, Wall D, Champagne M, Morse R, Krivit W, Kurtzberg J (2005) Transplantation of umbilical-cord blood in babies with infantile Krabbe’s disease. New Engl J Med 352:2069–2081CrossRefGoogle Scholar
  22. 22.
    Wright MD, Poe MD, DeRenzo A, Haldal S, Escolar ML (2017) Developmental outcomes of cord blood transplantation for Krabbe disease: a 15-year study. Neurology 89:1365–1372CrossRefGoogle Scholar
  23. 23.
    Shield JP, Stone J, Steward CG (2005) Bone marrow transplantation correcting beta-galactosidase activity does not influence neurological outcome in juvenile GM1-gangliosidosis. J Inherit Metab Dis 28:797–798CrossRefGoogle Scholar
  24. 24.
    Welling L, Marchal JP, van Hasselt P, van der Ploeg AT, Wijburg FA, Boelens JJ (2015) Early umbilical cord blood-derived stem cell transplantation does not prevent neurological deterioration in mucopolysaccharidosis type III. JIMD Rep 18:63–68CrossRefGoogle Scholar
  25. 25.
    Cherqui S, Kalatzis V, Forestier L, Poras I, Antignac C (2000) Identification and characterisation of the murine homologue of the gene responsible for cystinosis, Ctns. BMC Genomics 1:2CrossRefGoogle Scholar
  26. 26.
    Cherqui S, Sevin C, Hamard G, Kalatzis V, Sich M, Pequignot MO, Gogat K, Abitbol M, Broyer M, Gubler MC, Antignac C (2002) Intralysosomal cystine accumulation in mice lacking cystinosin, the protein defective in cystinosis. Mol Cell Biol 22:7622–7632CrossRefGoogle Scholar
  27. 27.
    Gaide Chevronnay HP, Janssens V, Van Der Smissen P, Liao XH, Abid Y, Nevo N, Antignac C, Refetoff S, Cherqui S, Pierreux CE, Courtoy PJ (2015) A mouse model suggests two mechanisms for thyroid alterations in infantile cystinosis: decreased thyroglobulin synthesis due to endoplasmic reticulum stress/unfolded protein response and impaired lysosomal processing. Endocrinology 156:2349–2364CrossRefGoogle Scholar
  28. 28.
    Kalatzis V, Serratrice N, Hippert C, Payet O, Arndt C, Cazevieille C, Maurice T, Hamel C, Malecaze F, Antignac C, Muller A, Kremer EJ (2007) The ocular anomalies in a cystinosis animal model mimic disease pathogenesis. Pediatr Res 62:156–162CrossRefGoogle Scholar
  29. 29.
    Nevo N, Chol M, Bailleux A, Kalatzis V, Morisset L, Devuyst O, Gubler MC, Antignac C (2010) Renal phenotype of the cystinosis mouse model is dependent upon genetic background. Nephrol Dial Transplant 25:1059–1066CrossRefGoogle Scholar
  30. 30.
    Simpson J, Nien CJ, Flynn K, Jester B, Cherqui S, Jester J (2011) Quantitative in vivo and ex vivo confocal microscopy analysis of corneal cystine crystals in the Ctns knockout mouse. Mol Vis 17:2212–2220Google Scholar
  31. 31.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147CrossRefGoogle Scholar
  32. 32.
    Yokoo T, Sakurai K, Ohashi T, Kawamura T (2003) Stem cell gene therapy for chronic renal failure. Curr Gene Ther 3:387–394CrossRefGoogle Scholar
  33. 33.
    Herrera MB, Bussolati B, Bruno S, Fonsato V, Romanazzi GM, Camussi G (2004) Mesenchymal stem cells contribute to the renal repair of acute tubular epithelial injury. Int J Mol Med 14:1035–1041Google Scholar
  34. 34.
    Morigi M, Imberti B, Zoja C, Corna D, Tomasoni S, Abbate M, Rottoli D, Angioletti S, Benigni A, Perico N, Alison M, Remuzzi G (2004) Mesenchymal stem cells are renotropic, helping to repair the kidney and improve function in acute renal failure. J Am Soc Nephrol 15:1794–1804CrossRefGoogle Scholar
  35. 35.
    Syres K, Harrison F, Tadlock M, Jester JV, Simpson J, Roy S, Salomon DR, Cherqui S (2009) Successful treatment of the murine model of cystinosis using bone marrow cell transplantation. Blood 114:2542–2552CrossRefGoogle Scholar
  36. 36.
    Brodehl J, Hagge W, Gellissen K (1965) Changes in kidney function in cystinosis. I. Inulin, PAH and electrolyte clearance in various stages of the disease. Ann Paediatr 205:131–154Google Scholar
  37. 37.
    Markello TC, Bernardini IM, Gahl WA (1993) Improved renal function in children with cystinosis treated with cysteamine. New Engl J Med 328:1157–1162CrossRefGoogle Scholar
  38. 38.
    Yeagy BA, Harrison F, Gubler MC, Koziol JA, Salomon DR, Cherqui S (2011) Kidney preservation by bone marrow cell transplantation in hereditary nephropathy. Kidney Int 79:1198–1206CrossRefGoogle Scholar
  39. 39.
    Gahl WA, Kuehl EM, Iwata F, Lindblad A, Kaiser-Kupfer MI (2000) Corneal crystals in nephropathic cystinosis: natural history and treatment with cysteamine eyedrops. Mol Genet Metab 71:100–120CrossRefGoogle Scholar
  40. 40.
    Kaiser-Kupfer MI, Caruso RC, Minkler DS, Gahl WA (1986) Long-term ocular manifestations in nephropathic cystinosis. Arch Ophthalmol 104:706–711CrossRefGoogle Scholar
  41. 41.
    Tsilou ET, Rubin BI, Reed GF, Iwata F, Gahl W, Kaiser-Kupfer MI (2002) Age-related prevalence of anterior segment complications in patients with infantile nephropathic cystinosis. Cornea 21:173–176CrossRefGoogle Scholar
  42. 42.
    Rocca CJ, Kreymerman A, Ur SN, Frizzi KE, Naphade S, Lau A, Tran T, Calcutt NA, Goldberg JL, Cherqui S (2015) Treatment of inherited eye defects by systemic hematopoietic stem cell transplantation. Invest Ophthalmol Vis Sci 56:7214–7223CrossRefGoogle Scholar
  43. 43.
    Moisseiev E, Smit-McBride Z, Oltjen S, Zhang P, Zawadzki RJ, Motta M, Murphy CJ, Cary W, Annett G, Nolta JA, Park SS (2016) Intravitreal administration of human bone marrow CD34+ stem cells in a murine model of retinal degeneration. Invest Ophthalmol Vis Sci 57:4125–4135CrossRefGoogle Scholar
  44. 44.
    Park SS, Caballero S, Bauer G, Shibata B, Roth A, Fitzgerald PG, Forward KI, Zhou P, McGee J, Telander DG, Grant MB, Nolta JA (2012) Long-term effects of intravitreal injection of GMP-grade bone-marrow-derived CD34+ cells in NOD-SCID mice with acute ischemia-reperfusion injury. Invest Ophthalmol Vis Sci 53:986–994CrossRefGoogle Scholar
  45. 45.
    Siqueira RC, Messias A, Gurgel VP, Simoes BP, Scott IU, Jorge R (2015) Improvement of ischaemic macular oedema after intravitreal injection of autologous bone marrow-derived haematopoietic stem cells. Acta Ophthalmol 93:e174–e176CrossRefGoogle Scholar
  46. 46.
    Chan AM, Lynch MJ, Bailey JD, Ezrin C, Fraser D (1970) Hypothyroidism in cystinosis. A clinical, endocrinologic and histologic study involving sixteen patients with cystinosis. Am J Med 48:678–692CrossRefGoogle Scholar
  47. 47.
    Gaide Chevronnay HP, Janssens V, Van Der Smissen P, Rocca CJ, Liao XH, Refetoff S, Pierreux CE, Cherqui S, Courtoy PJ (2016) Hematopoietic stem cells transplantation can normalize thyroid function in a cystinosis mouse model. Endocrinology 157:1363–1371CrossRefGoogle Scholar
  48. 48.
    Naphade S, Sharma J, Gaide Chevronnay HP, Shook MA, Yeagy BA, Rocca CJ, Ur SN, Lau AJ, Courtoy PJ, Cherqui S (2015) Brief reports: lysosomal cross-correction by hematopoietic stem cell-derived macrophages via tunneling nanotubes. Stem Cells 33:301–309CrossRefGoogle Scholar
  49. 49.
    Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M (2013) Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol 229:176–185CrossRefGoogle Scholar
  50. 50.
    Martinez FO, Gordon S (2014) The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep.  https://doi.org/10.12703/P6-13 (E Collection)
  51. 51.
    Iglesias DM, El-Kares R, Taranta A, Bellomo F, Emma F, Besouw M, Levtchenko E, Toelen J, van den Heuvel L, Chu L, Zhao J, Young YK, Eliopoulos N, Goodyer P (2012) Stem cell microvesicles transfer cystinosin to human cystinotic cells and reduce cystine accumulation in vitro. PLoS One 7:e42840CrossRefGoogle Scholar
  52. 52.
    Thoene J, Goss T, Witcher M, Mullet J, N'Kuli F, Van Der Smissen P, Courtoy P, Hahn SH (2013) In vitro correction of disorders of lysosomal transport by microvesicles derived from baculovirus-infected Spodoptera cells. Mol Genet Metab 109:77–85CrossRefGoogle Scholar
  53. 53.
    Rustom A, Saffrich R, Markovic I, Walther P, Gerdes HH (2004) Nanotubular highways for intercellular organelle transport. Science 303:1007–1010CrossRefGoogle Scholar
  54. 54.
    Watkins SC, Salter RD (2005) Functional connectivity between immune cells mediated by tunneling nanotubules. Immunity 23:309–318CrossRefGoogle Scholar
  55. 55.
    Chinnery HR, Pearlman E, McMenamin PG (2008) Cutting edge: membrane nanotubes in vivo: a feature of MHC class II+ cells in the mouse cornea. J Immunol 180:5779–5783CrossRefGoogle Scholar
  56. 56.
    Islam MN, Das SR, Emin MT, Wei M, Sun L, Westphalen K, Rowlands DJ, Quadri SK, Bhattacharya S, Bhattacharya J (2012) Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat Med 18:759–765CrossRefGoogle Scholar
  57. 57.
    Onfelt B, Nedvetzki S, Benninger RK, Purbhoo MA, Sowinski S, Hume AN, Seabra MC, Neil MA, French PM, Davis DM (2006) Structurally distinct membrane nanotubes between human macrophages support long-distance vesicular traffic or surfing of bacteria. J Immunol 177:8476–8483CrossRefGoogle Scholar
  58. 58.
    Gousset K, Schiff E, Langevin C, Marijanovic Z, Caputo A, Browman DT, Chenouard N, de Chaumont F, Martino A, Enninga J, Olivo-Marin JC, Mannel D, Zurzolo C (2009) Prions hijack tunnelling nanotubes for intercellular spread. Nat Cell Biol 11:328–336CrossRefGoogle Scholar
  59. 59.
    Smith IF, Shuai J, Parker I (2011) Active generation and propagation of Ca2+ signals within tunneling membrane nanotubes. Biophys J 100:L37–L39CrossRefGoogle Scholar
  60. 60.
    Yasuda K, Khandare A, Burianovskyy L, Maruyama S, Zhang F, Nasjletti A, Goligorsky MS (2011) Tunneling nanotubes mediate rescue of prematurely senescent endothelial cells by endothelial progenitors: exchange of lysosomal pool. Aging (Albany NY) 3:597–608CrossRefGoogle Scholar
  61. 61.
    Wang X, Gerdes HH (2015) Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells. Cell Death Differ 22:1181–1191CrossRefGoogle Scholar
  62. 62.
    Harrison F, Yeagy BA, Rocca CJ, Kohn DB, Salomon DR, Cherqui S (2013) Hematopoietic stem cell gene therapy for the multisystemic lysosomal storage disorder cystinosis. Mol Ther 21:433–444CrossRefGoogle Scholar
  63. 63.
    Abrahamson DR, Leardkamolkarn V (1991) Development of kidney tubular basement membranes. Kidney Int 39:382–393CrossRefGoogle Scholar
  64. 64.
    Gabriel SS, Belge H, Gassama A, Debaix H, Luciani A, Fehr T, Devuyst O (2017) Bone marrow transplantation improves proximal tubule dysfunction in a mouse model of Dent disease. Kidney Int 91:842–855CrossRefGoogle Scholar
  65. 65.
    Devuyst O, Thakker RV (2010) Dent’s disease. Orphanet J Rare Dis 5:28CrossRefGoogle Scholar
  66. 66.
    Pallera AM, Schwartzberg LS (2004) Managing the toxicity of hematopoietic stem cell transplant. J Support Oncol 2:223–237 discussion 237-228, 241, 246-227 Google Scholar
  67. 67.
    Montini E, Cesana D, Schmidt M, Sanvito F, Ponzoni M, Bartholomae C, Sergi Sergi L, Benedicenti F, Ambrosi A, Di Serio C, Doglioni C, von Kalle C, Naldini L (2006) Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration. Nat Biotechnol 24:687–696CrossRefGoogle Scholar
  68. 68.
    De Ravin SS, Wu X, Moir S, Anaya-O'Brien S, Kwatemaa N, Littel P, Theobald N, Choi U, Su L, Marquesen M, Hilligoss D, Lee J, Buckner CM, Zarember KA, O'Connor G, McVicar D, Kuhns D, Throm RE, Zhou S, Notarangelo LD, Hanson IC, Cowan MJ, Kang E, Hadigan C, Meagher M, Gray JT, Sorrentino BP, Malech HL (2016) Lentiviral hematopoietic stem cell gene therapy for X-linked severe combined immunodeficiency. Sci Transl Med 8:335ra357CrossRefGoogle Scholar
  69. 69.
    Ferrua F, Aiuti A (2017) Twenty-five years of gene therapy for ADA-SCID: from bubble babies to an approved drug. Hum Gene Ther 28:972–981CrossRefGoogle Scholar
  70. 70.
    Morris EC, Fox T, Chakraverty R, Tendeiro R, Snell K, Rivat C, Grace S, Gilmour K, Workman S, Buckland K, Butler K, Chee R, Salama AD, Ibrahim H, Hara H, Duret C, Mavilio F, Male F, Bushman FD, Galy A, Burns SO, Gaspar HB, Thrasher AJ (2017) Gene therapy for Wiskott-Aldrich syndrome in a severely affected adult. Blood 130:1327–1335CrossRefGoogle Scholar
  71. 71.
    Biffi A, Montini E, Lorioli L, Cesani M, Fumagalli F, Plati T, Baldoli C, Martino S, Calabria A, Canale S, Benedicenti F, Vallanti G, Biasco L, Leo S, Kabbara N, Zanetti G, Rizzo WB, Mehta NA, Cicalese MP, Casiraghi M, Boelens JJ, Del Carro U, Dow DJ, Schmidt M, Assanelli A, Neduva V, Di Serio C, Stupka E, Gardner J, von Kalle C, Bordignon C, Ciceri F, Rovelli A, Roncarolo MG, Aiuti A, Sessa M, Naldini L (2013) Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science 341:1233158CrossRefGoogle Scholar
  72. 72.
    Cartier N, Hacein-Bey-Abina S, Bartholomae CC, Bougneres P, Schmidt M, Kalle CV, Fischer A, Cavazzana-Calvo M, Aubourg P (2012) Lentiviral hematopoietic cell gene therapy for X-linked adrenoleukodystrophy. Methods Enzymol 507:187–198CrossRefGoogle Scholar
  73. 73.
    Cartier N, Hacein-Bey-Abina S, Bartholomae CC, Veres G, Schmidt M, Kutschera I, Vidaud M, Abel U, Dal-Cortivo L, Caccavelli L, Mahlaoui N, Kiermer V, Mittelstaedt D, Bellesme C, Lahlou N, Lefrere F, Blanche S, Audit M, Payen E, Leboulch P, l’Homme B, Bougneres P, Von Kalle C, Fischer A, Cavazzana-Calvo M, Aubourg P (2009) Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 326:818–823CrossRefGoogle Scholar
  74. 74.
    Eichler F, Duncan C, Musolino PL, Orchard PJ, De Oliveira S, Thrasher AJ, Armant M, Dansereau C, Lund TC, Miller WP, Raymond GV, Sankar R, Shah AJ, Sevin C, Gaspar HB, Gissen P, Amartino H, Bratkovic D, Smith NJC, Paker AM, Shamir E, O'Meara T, Davidson D, Aubourg P, Williams DA (2017) Hematopoietic stem-cell gene therapy for cerebral adrenoleukodystrophy. N Engl J Med 377:1630–1638CrossRefGoogle Scholar
  75. 75.
    Plotnikov EY, Khryapenkova TG, Galkina SI, Sukhikh GT, Zorov DB (2010) Cytoplasm and organelle transfer between mesenchymal multipotent stromal cells and renal tubular cells in co-culture. Exp Cell Res 316:2447–2455CrossRefGoogle Scholar
  76. 76.
    Plotnikov EY, Khryapenkova TG, Vasileva AK, Marey MV, Galkina SI, Isaev NK, Sheval EV, Polyakov VY, Sukhikh GT, Zorov DB (2008) Cell-to-cell cross-talk between mesenchymal stem cells and cardiomyocytes in co-culture. J Cell Mol Med 12:1622–1631CrossRefGoogle Scholar
  77. 77.
    Spees JL, Olson SD, Whitney MJ, Prockop DJ (2006) Mitochondrial transfer between cells can rescue aerobic respiration. Proc Natl Acad Sci U S A 103:1283–1288CrossRefGoogle Scholar
  78. 78.
    Rocca CJ, Goodman SM, Dulin JN, Haquang JH, Gertsman I, Blondelle J, Smith JLM, Heyser CJ, Cherqui S (2017) Transplantation of wild-type mouse hematopoietic stem and progenitor cells ameliorates deficits in a mouse model of Friedreich’s ataxia. Sci Transl Med.  https://doi.org/10.1126/scitranslmed.aaj2347

Copyright information

© IPNA 2018

Authors and Affiliations

  1. 1.Department of Pediatrics, Division of GeneticsUniversity of CaliforniaSan DiegoUSA

Personalised recommendations