Skip to main content

Advertisement

Log in

Disruptive technological advances in vascular access for dialysis: an overview

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

End-stage kidney disease (ESKD), one of the most prevalent diseases in the world and with increasing incidence, is associated with significant morbidity and mortality. Current available modes of renal replacement therapy (RRT) include dialysis and renal transplantation. Though renal transplantation is the preferred and ideal mode of RRT, this modality may not be available to all patients with ESKD. Moreover, renal transplant recipients are constantly at risk of complications associated with immunosuppression and immunosuppressant use, and posttransplant lymphoproliferative disorder. Dialysis may be the only available modality in certain patients. However, dialysis has its limitations, which include issues associated with lack of vascular access, risks of infections and vascular thrombosis, decreased quality of life, and absence of biosynthetic functions of the kidney. In particular, the creation and maintenance of hemodialysis vascular access in children poses a unique set of challenges to the pediatric nephrologist owing to the smaller vessel diameters and vascular hyperreactivity compared with adult patients. Vascular access issues continue to be one of the major limiting factors prohibiting the delivery of adequate dialysis in ESKD patients and is the Achilles’ heel of hemodialysis. This review aims to provide a critical overview of disruptive technological advances and innovations for vascular access. Novel strategies in preventing neointimal hyperplasia, novel bioengineered products, grafts and devices for vascular access will be discussed. The potential impact of these solutions on improving the morbidity encountered by dialysis patients will also be examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Couser WG, Remuzzi G, Mendis S, Tonelli M (2011) The contribution of chronic kidney disease to the global burden of major noncommunicable diseases. Kidney Int 80:1258–1270

    Article  PubMed  Google Scholar 

  2. The Lancet (2013) The global issue of kidney disease. Lancet 382:101

  3. Zaritsky JJ, Salusky IB, Gales B, Ramos G, Atkinson J, Allestead A, Brandt ML, Goldstein SL (2008) Vascular access complications in long-term pediatric hemodialysis patients. Pediatr Nephrol 23:2061–2065

    Article  PubMed  Google Scholar 

  4. Hayes WN, Watson AR, Callaghan N, Wright E, Stefanidis CJ, European Pediatric Dialysis Working Group (2012) Vascular access: choice and complications in European paediatric haemodialysis units. Pediatr Nephrol 27:999–1004

    Article  PubMed  Google Scholar 

  5. Schaefer F, Feneberg R, Aksu N, Donmez O, Sadikoglu B, Alexander SR, Mir S, Ha IS, Fischbach M, Simkova E, Watson AR, Moller K, von Baum H, Warady BA (2007) Worldwide variation of dialysis-associated peritonitis in children. Kidney Int 72:1374–1379

    Article  CAS  PubMed  Google Scholar 

  6. Sethna CB, Bryant K, Munshi R, Warady BA, Richardson T, Lawlor J, Newland JG, Neu A, SCOPE Investigators (2016) Risk factors for and outcomes of catheter-associated peritonitis in children: the SCOPE collaborative. Clin J Am Soc Nephrol 11:1590–1596

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wartman SM, Rosen D, Woo K, Gradman WS, Weaver FA, Rowe V (2014) Outcomes with arteriovenous fistulas in a pediatric population. J Vasc Surg 60:170–174

    Article  PubMed  Google Scholar 

  8. Regus S, Almási-Sperling V, Lang W (2016) Pediatric patients undergoing arteriovenous fistula surgery without intraoperative heparin. J Vasc Access 17:494–498

    Article  PubMed  Google Scholar 

  9. Goldstein SL, Graham N, Burwinkle T, Warady B, Farrah R, Varni JW (2006) Health-related quality of life in pediatric patients with ESRD. Pediatr Nephrol 21:846–850

    Article  PubMed  Google Scholar 

  10. Kostoff RN, Boylan R, Simons GR (2004) Disruptive technology roadmaps. Technol Forecast Soc Chang 71:141–159

    Article  Google Scholar 

  11. Yu D, Hang CC (2011) Creating technology candidates for disruptive innovation: generally applicable R&D strategies. Technovation 31:401–410

    Article  Google Scholar 

  12. Kolff WJ, Berk HTJ (1943) De kunstmatige nier; een dialysator met groot oppervlak. Ned Tijdschr Geneeskd 87:1684

    Google Scholar 

  13. Broers H (2006) Inventor for life, the story of W. J. Kolff, father of artificial organs. B&V media, Kampen

    Google Scholar 

  14. Kolff W (1946) De kunstmatige nier. Kok, Kampen

    Google Scholar 

  15. Vienken J (2009) ‘Bioengineering for life’: a tribute to Willem Johan Kolff. Nephrol Dial Transplant 24:2299–2301

    Article  PubMed  Google Scholar 

  16. Schwab SJ (2007) Hemodialysis vascular access: the Achilles’ heel remains. Kidney Int 72:665–666

    Article  CAS  PubMed  Google Scholar 

  17. Akoh JA, Hakim NS (1999) Preserving function and long-term patency of dialysis access. Ann R Coll Surg Engl 81:339–342

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Valliant A, McComb K (2015) Vascular access monitoring and surveillance: an update. Adv Chronic Kidney Dis 22:446–452

    Article  PubMed  Google Scholar 

  19. Allon M (2004) Dialysis catheter-related bacteremia: treatment and prophylaxis. Am J Kidney Dis 44:779–791

    Article  PubMed  Google Scholar 

  20. Allon M, Robbin ML (2002) Increasing arteriovenous fistulas in hemodialysis patients: problems and solutions. Kidney Int 62:1109–1124

    Article  PubMed  Google Scholar 

  21. Lok CE (2007) Fistula first initiative: advantages and pitfalls. Clin J Am Soc Nephrol 2:1043–1053

    Article  PubMed  Google Scholar 

  22. Pisoni RL, Young EW, Dykstra DM, Greenwood RN, Hecking E, Gillespie B, Wolfe RA, Goodkin DA, Held PJ (2002) Vascular access use in Europe and the United States: results from the DOPPS. Kidney Int 61:305–316

    Article  PubMed  Google Scholar 

  23. Bradbury BD, Chen F, Furniss A, Pisoni RL, Keen M, Mapes D, Krishnan M (2009) Conversion of vascular access type among incident hemodialysis patients: description and association with mortality. Am J Kidney Dis 53:804–814

    Article  PubMed  Google Scholar 

  24. Lacson E Jr, Wang W, Lazarus JM, Hakim RM (2009) Change in vascular access and mortality in maintenance hemodialysis patients. Am J Kidney Dis 54:912–921

    Article  PubMed  Google Scholar 

  25. Vassalotti JA, Jennings WC, Beathard GA, Neumann M, Caponi S, Fox CH, Spergel LM, Fistula First Breakthrough Initiative Community Education Committee (2012) Fistula first breakthrough initiative: targeting catheter last in fistula first. Semin Dial 25:303–310

    Article  PubMed  Google Scholar 

  26. Dixon BS (2006) Why don’t fistulas mature? Kidney Int 70:1413–1422

    Article  CAS  PubMed  Google Scholar 

  27. Schwab SJ, Harrington JT, Singh A, Roher R, Shohaib SA, Perrone RD, Meyer K, Beasley D (1999) Vascular access for hemodialysis. Kidney Int 55:2078–2090

    Article  CAS  PubMed  Google Scholar 

  28. Feldman HI, Joffe M, Rosas SE, Burns JE, Knauss J, Brayman K (2003) Predictors of successful arteriovenous fistula maturation. Am J Kidney Dis 42:1000–1012

    Article  PubMed  Google Scholar 

  29. Lacson E Jr, Lazarus JM, Himmelfarb J, Ikizler TA, Hakim RM (2007) Balancing fistula first with catheters last. Am J Kidney Dis 50:379–395

    Article  PubMed  Google Scholar 

  30. Huijbregts HJ, Bots ML, Wittens CH, Schrama YC, Moll FL, Blankestijn PJ; CIMINO study group (2008) Hemodialysis arteriovenous fistula patency revisited: results of a prospective, multicenter initiative. Clin J Am Soc Nephrol 3:714-719

  31. Maya ID, Allon M (2005) Outcomes of tunneled femoral hemodialysis catheters: comparison with internal jugular vein catheters. Kidney Int 68:2886–2889

    Article  PubMed  Google Scholar 

  32. Huber TS, Carter JW, Carter RL, Seeger JM (2003) Patency of autogenous and polytetrafluoroethylene upper extremity arteriovenous hemodialysis accesses: a systematic review. J Vasc Surg 38:1005–1011

    Article  PubMed  Google Scholar 

  33. Roy-Chaudhury P, Sukhatme VP, Cheung AK (2006) Hemodialysis vascular access dysfunction: a cellular and molecular viewpoint. J Am Soc Nephrol 17:1112–1127

    Article  PubMed  Google Scholar 

  34. Dixon BS, Beck GJ, Vazquez MA, Greenberg A, Delmez JA, Allon M, Dember LM, Himmelfarb J, Gassman JJ, Greene T, Radeva MK, Davidson IJ, Ikizler TA, Braden GL, Fenves AZ, Kaufman JS, Cotton JR Jr, Martin KJ, JW MN, Rahman A, Lawson JH, Whiting JF, Hu B, Meyers CM, Kusek JW, Feldman HI, DAC Study Group (2009) Effect of dipyridamole plus aspirin on hemodialysis graft patency. N Engl J Med 360:2191–2201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lok CE, Sontrop JM, Tomlinson G, Rajan D, Cattral M, Oreopoulos G, Harris J, Moist L (2013) Cumulative patency of contemporary fistulas versus grafts (2000-2010). Clin J Am Soc Nephrol 8:810–818

    Article  PubMed  PubMed Central  Google Scholar 

  36. CDC (2011) Vital signs: central line-associated blood stream infections—United States, 2001, 2008, and 2009. Morb Mortal Wkly Rep (MMWR) 60:243–248

    Google Scholar 

  37. Tokars JI, Miller ER, Stein G (2002) New national surveillance system for hemodialysis-associated infections: initial results. Am J Infect Control 30:288–295

    Article  PubMed  Google Scholar 

  38. Ishani A, Collins AJ, Herzog CA, Foley RN (2005) Septicemia, access and cardiovascular disease in dialysis patients: the USRDS wave 2 study. Kidney Int 68:311–318

    Article  PubMed  Google Scholar 

  39. Agarwal AK, Patel BM, Haddad NJ (2007) Central vein stenosis: a nephrologist’s perspective. Semin Dial 20:53–62

    Article  PubMed  Google Scholar 

  40. Lee T, Barker J, Allon M (2005) Tunneled catheters in hemodialysis patients: reasons and subsequent outcomes. Am J Kidney Dis 46:501–508

    Article  PubMed  Google Scholar 

  41. MacRae JM, Ahmed A, Johnson N, Levin A, Kiaii M (2005) Central vein stenosis: a common problem in patients on hemodialysis. ASAIO J 51:77–81

    Article  PubMed  Google Scholar 

  42. Roy-Chaudhury P, Lee TC (2007) Vascular stenosis: biology and interventions. Curr Opin Nephrol Hypertens 16:516–522

    Article  PubMed  Google Scholar 

  43. Diskin CJ, Stokes TJ, Dansby LM, Radcliff L, Carter TB (2008) Understanding the pathophysiology of hemodialysis access problems as a prelude to developing innovative therapies. Nat Clin Pract Nephrol 4:628–638

    Article  CAS  PubMed  Google Scholar 

  44. Franano FN, Hance KA, Henry C, Bland K, Burke S (2007) PRT-201 dilates outflow veins and improves maturation rates in a rabbit model of AVF. Nephrol Dial Transplant 22:vi155–vi156

    Google Scholar 

  45. Amabile PG, Wong H, Uy M, Boroumand S, Elkins CJ, Yuksel E, Waugh JM, Dake MD (2002) In vivo vascular engineering of vein grafts: directed migration of smooth muscle cells by perivascular release of elastase limits neointimal proliferation. J Vasc Interv Radiol 13:709–715

    Article  PubMed  Google Scholar 

  46. Wong AH, Waugh JM, Amabile PG, Yuksel E, Dake MD (2002) In vivo vascular engineering: directed migration of smooth muscle cells to limit neointima. Tissue Eng 8:189–199

    Article  PubMed  Google Scholar 

  47. Dwivedi AJ, Roy-Chaudhury P, Peden EK, Browne BJ, Ladenheim ED, Scavo VA, Gustafson PN, Wong MD, Magill M, Lindow F, Blair AT, Jaff MR, Franano FN, Burke SK (2014) Application of human type I pancreatic elastase (PRT-201) to the venous anastomosis of arteriovenous grafts in patients with chronic kidney disease. J Vasc Access 15:376–384

    Article  PubMed  PubMed Central  Google Scholar 

  48. Paulson WD, Kipshidze N, Kipiani K, Beridze N, DeVita MV, Shenoy S, Iyer SS (2012) Safety and efficacy of local periadventitial delivery of sirolimus for improving hemodialysis graft patency: first human experience with a sirolimus-eluting collagen membrane (Coll-R). Nephrol Dial Transplant 27:1219–1224

    Article  CAS  PubMed  Google Scholar 

  49. Morice MC, Serruys PW, Barragan P, Bode C, Van Es GA, Stoll HP, Snead D, Mauri L, Cutlip DE, Sousa E (2007) Long-term clinical outcomes with sirolimus-eluting coronary stents: five-year results of the RAVEL trial. J Am Coll Cardiol 50:1299–1304

    Article  CAS  PubMed  Google Scholar 

  50. Weisz G, Leon MB, Holmes DR Jr, Kereiakes DJ, Popma JJ, Teirstein PS, Cohen SA, Wang H, Cutlip DE, Moses JW (2009) Five-year follow-up after sirolimus-eluting stent implantation results of the SIRIUS (Sirolimus-eluting stent in de-novo native coronary lesions) trial. J Am Coll Cardiol 53:1488–1497

    Article  CAS  PubMed  Google Scholar 

  51. Heldman AW, Cheng L, Jenkins GM, Heller PF, Kim DW, Ware M Jr, Nater C, Hruban RH, Rezai B, Abella BS, Bunge KE, Kinsella JL, Sollott SJ, Lakatta EG, Brinker JA, Hunter WL, Froehlich JP (2001) Paclitaxel stent coating inhibits neointimal hyperplasia at 4 weeks in a porcine model of coronary restenosis. Circulation 103:2289–2295

    Article  CAS  PubMed  Google Scholar 

  52. Hong MK, Mintz GS, Lee CW, Song JM, Han KH, Kang DH, Song JK, Kim JJ, Weissman NJ, Fearnot NE, Park SW, Park SJ, ASian Paclitaxel-Eluting Stent Clinical Trial (2003) Paclitaxel coating reduces in-stent intimal hyperplasia in human coronary arteries: a serial volumetric intravascular ultrasound analysis from the Asian Paclitaxel-eluting stent clinical trial (ASPECT). Circulation 107(4):517–520

    Article  PubMed  Google Scholar 

  53. Jeroudi OM, Abdel-Karim AR, Michael TT, Lichtenwalter C, de Lemos JA, Obel O, Addo T, Roesle M, Haagen D, Rangan BV, Raghunathan D, DaSilva M, Saeed B, Bissett JK, Sachdeva R, Voudris VV, Karyofillis P, Kar B, Rossen J, Fasseas P, Berger P, Banerjee S, Brilakis ES (2011) Paclitaxel-eluting stents reduce neointimal hyperplasia compared to bare metal stents in saphenous vein grafts: intravascular ultrasonography analysis of the SOS (stenting of Saphenous vein grafts) trial. Euro Intervention 7:948–954

    PubMed  Google Scholar 

  54. Lee CH, Yu CY, Chang SH, Hung KC, Liu SJ, Wang CJ, Hsu MY, Hsieh IC, Chen WJ, Ko YS, Wen MS (2014) Promoting endothelial recovery and reducing neointimal hyperplasia using sequential-like release of acetylsalicylic acid and paclitaxel-loaded biodegradable stents. Int J Nanomedicine 9:4117–4133

    Article  PubMed  PubMed Central  Google Scholar 

  55. Katsanos K, Karnabatidis D, Kitrou P, Spiliopoulos S, Christeas N, Siablis D (2012) Paclitaxel-coated balloon angioplasty vs. plain balloon dilation for the treatment of failing dialysis access: 6-month interim results from a prospective randomized controlled trial. J Endovasc Ther 19:263–272

    Article  PubMed  Google Scholar 

  56. Kitrou PM, Spiliopoulos S, Katsanos K, Papachristou E, Siablis D, Karnabatidis D (2015) Paclitaxel-coated versus plain balloon angioplasty for dysfunctional arteriovenous fistulae: one-year results of a prospective randomized controlled trial. J Vasc Interv Radiol 26:348–354

    Article  PubMed  Google Scholar 

  57. Karunanithy N, Mesa IR, Dorling A, Calder F, Katsanos K, Semik V, Robinson E, Peacock J, Das N, Forman C, Lawman S, Steiner K, Wilkins CJ, Robson MG (2016) Paclitaxel-coated balloon fistuloplasty versus plain balloon fistuloplasty only to preserve the patency of arteriovenous fistulae used for haemodialysis (PAVE): study protocol for a randomised controlled trial. Trials 17:241

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zilla P, Deutsch M, Meinhart J, Puschmann R, Eberl T, Minar E, Dudczak R, Lugmaier H, Schmidt P, Noszian I, Fischlein T (1994) Clinical in vitro endothelialization of femoropopliteal bypass grafts: an actuarial follow-up over three years. J Vasc Surg 19:540–548

    Article  CAS  PubMed  Google Scholar 

  59. Wilson JM, Birinyi LK, Salomon RN, Libby P, Callow AD, Mulligan RC (1989) Implantation of vascular grafts lined with genetically modified endothelial cells. Science 244:1344–1346

    Article  CAS  PubMed  Google Scholar 

  60. Nathan A, Nugent MA, Edelman ER (1995) Tissue engineered perivascular endothelial cell implants regulate vascular injury. Proc Natl Acad Sci U S A 92:8130–8134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nugent HM, Rogers C, Edelman ER (1999) Endothelial implants inhibit intimal hyperplasia after porcine angioplasty. Circ Res 84:384–391

    Article  CAS  PubMed  Google Scholar 

  62. Nugent HM, Sjin RT, White D, Milton LG, Manson RJ, Lawson JH, Edelman ER (2007) Adventitial endothelial implants reduce matrix metalloproteinase-2 expression and increase luminal diameter in porcine arteriovenous grafts. J Vasc Surg 46:548–556

    Article  PubMed  PubMed Central  Google Scholar 

  63. Hughes D, Fu AA, Puggioni A, Glockner JF, Anwer B, McGuire AM, Mukhopadhyay D, Misra S (2009) Adventitial transplantation of blood outgrowth endothelial cells in porcine haemodialysis grafts alleviates hypoxia and decreases neointimal proliferation through a matrix metalloproteinase-9-mediated pathway--a pilot study. Nephrol Dial Transplant 24:85–96

    Article  CAS  PubMed  Google Scholar 

  64. Conte MS, Nugent HM, Gaccione P, Guleria I, Roy-Chaudhury P, Lawson JH (2009) Multicenter phase I/II trial of the safety of allogeneic endothelial cell implants after the creation of arteriovenous access for hemodialysis use: the V-HEALTH study. J Vasc Surg 50:1359–1368

    Article  PubMed  Google Scholar 

  65. Conte MS, Nugent HM, Gaccione P, Roy-Chaudhury P, Lawson JH (2011) Influence of diabetes and perivascular allogeneic endothelial cell implants on arteriovenous fistula remodeling. J Vasc Surg 54:1383–1389

    Article  PubMed  Google Scholar 

  66. L’Heureux N, Dusserre N, Konig G, Victor B, Keire P, Wight TN, Chronos NA, Kyles AE, Gregory CR, Hoyt G, Robbins RC, McAllister TN (2006) Human tissue-engineered blood vessels for adult arterial revascularization. Nat Med 12:361–365

    Article  PubMed  PubMed Central  Google Scholar 

  67. L’Heureux N, Dusserre N, Marini A, Garrido S, de la Fuente L, McAllister T (2007) Technology insight: the evolution of tissue-engineered vascular grafts--from research to clinical practice. Nat Clin Pract Cardiovasc Med 4:389–395

    Article  PubMed  Google Scholar 

  68. McAllister TN, Dusserre N, Maruszewski M, L’heureux N (2008) Cell-based therapeutics from an economic perspective: primed for a commercial success or a research sinkhole? Regen Med 3:925–937

    Article  PubMed  Google Scholar 

  69. Konig G, McAllister TN, Dusserre N, Garrido SA, Iyican C, Marini A, Fiorillo A, Avila H, Wystrychowski W, Zagalski K, Maruszewski M, Jones AL, Cierpka L, de la Fuente LM, L’Heureux N (2009) Mechanical properties of completely autologous human tissue engineered blood vessels compared to human saphenous vein and mammary artery. Biomaterials 30:1542–1550

    Article  CAS  PubMed  Google Scholar 

  70. McAllister TN, Maruszewski M, Garrido SA, Wystrychowski W, Dusserre N, Marini A, Zagalski K, Fiorillo A, Avila H, Manglano X, Antonelli J, Kocher A, Zembala M, Cierpka L, de la Fuente LM, L’heureux N (2009) Effectiveness of haemodialysis access with an autologous tissue-engineered vascular graft: a multicentre cohort study. Lancet 373:1440–1446

    Article  PubMed  Google Scholar 

  71. McAllister T (2010) The evolution of tissue engineered vascular grafts: from research to clinical practice. Conf Proc IEEE Eng Med Biol Soc 2010:3589

    Google Scholar 

  72. Peck MK, Dusserre N, Zagalski K, Garrido SA, Wystrychowski W, Glickman MH, Chronos NA, Cierpka L, L’Heureux N, McAllister TN (2011) New biological solutions for hemodialysis access. J Vasc Access 12:185–192

    Article  PubMed  Google Scholar 

  73. Peck M, Gebhart D, Dusserre N, McAllister TN, L’Heureux N (2012) The evolution of vascular tissue engineering and current state of the art. Cells Tissues Organs 195:144–158

    Article  CAS  PubMed  Google Scholar 

  74. McAllister TN, Audley D, L’Heureux N (2012) Autologous cell therapies: challenges in US FDA regulation. Regen Med 7(6 Suppl):94–97

    Article  CAS  PubMed  Google Scholar 

  75. Wystrychowski W, McAllister TN, Zagalski K, Dusserre N, Cierpka L, L’Heureux N (2014) First human use of an allogeneic tissue-engineered vascular graft for hemodialysis access. J Vasc Surg 60:1353–1357

    Article  PubMed  Google Scholar 

  76. L’Heureux N, Letourneur D (2015) Clinical translation of tissue-engineered constructs for severe leg injuries. Ann Transl Med 3:134

    PubMed  PubMed Central  Google Scholar 

  77. Dahl SL, Rhim C, Song YC, Niklason LE (2007) Mechanical properties and compositions of tissue engineered and native arteries. Ann Biomed Eng 35:348–355

    Article  PubMed  PubMed Central  Google Scholar 

  78. Dahl SL, Vaughn ME, Niklason LE (2007) An ultrastructural analysis of collagen in tissue engineered arteries. Ann Biomed Eng 35:1749–1755

    Article  PubMed  PubMed Central  Google Scholar 

  79. Dahl SL, Vaughn ME, Hu JJ, Driessen NJ, Baaijens FP, Humphrey JD, Niklason LE (2008) A microstructurally motivated model of the mechanical behavior of tissue engineered blood vessels. Ann Biomed Eng 36:1782–1792

    Article  PubMed  PubMed Central  Google Scholar 

  80. Dahl SL, Kypson AP, Lawson JH, Blum JL, Strader JT, Li Y, Manson RJ, Tente WE, DiBernardo L, Hensley MT, Carter R, Williams TP, Prichard HL, Dey MS, Begelman KG, Niklason LE (2011) Readily available tissue-engineered vascular grafts. Sci Transl med 3:68ra9

    Article  PubMed  Google Scholar 

  81. Prichard HL, Manson RJ, DiBernardo L, Niklason LE, Lawson JH, Dahl SL (2011) An early study on the mechanisms that allow tissue-engineered vascular grafts to resist intimal hyperplasia. J Cardiovasc Transl Res 4:674–682

    Article  PubMed  PubMed Central  Google Scholar 

  82. Dahl SL, Blum JL, Niklason LE (2011) Bioengineered vascular grafts: can we make them off-the-shelf? Trends Cardiovasc Med 21:83–89

    Article  CAS  PubMed  Google Scholar 

  83. Lawson JH, Glickman MH, Ilzecki M, Jakimowicz T, Jaroszynski A, Peden EK, Pilgrim AJ, Prichard HL, Guziewicz M, Przywara S, Szmidt J, Turek J, Witkiewicz W, Zapotoczny N, Zubilewicz T, Niklason LE (2016) Bioengineered human acellular vessels for dialysis access in patients with end-stage renal disease: two phase 2 single-arm trials. Lancet 387:2026–2034

    Article  PubMed  PubMed Central  Google Scholar 

  84. L’Heureux N, McAllister TN, de la Fuente LM (2007) Tissue-engineered blood vessel for adult arterial revascularization. N Engl J Med 357:1451–1453

    Article  PubMed  Google Scholar 

  85. National Kidney Foundation (2002) K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 39(2 Suppl 1):S1–S266

    Google Scholar 

  86. Hansbrough JF, Mozingo DW, Kealey GP, Davis M, Gidner A, Gentzkow GD (1997) Clinical trials of a biosynthetic temporary skin replacement, Dermagraft-transitional covering, compared with cryopreserved human cadaver skin for temporary coverage of excised burn wounds. J Burn Care Res 18:43–51

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wee-Song Yeo.

Ethics declarations

Competing interests

The authors declare that they have no competing interests or conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeo, WS., Ng, Q.X. Disruptive technological advances in vascular access for dialysis: an overview. Pediatr Nephrol 33, 2221–2226 (2018). https://doi.org/10.1007/s00467-017-3853-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-017-3853-7

Keywords

Navigation