Skip to main content

Advertisement

Log in

Prevalence and associated factors of renal dysfunction and proteinuria in cyanotic congenital heart disease

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

Cyanotic nephropathy (CN), seen in 30–50% of patients with congenital cyanotic heart disease (CCHD), affects both tubular and glomerular function, resulting in proteinuria and azotemia. Microalbuminuria is an early marker for glomerular damage and an independent predictor of progressive renal disease.

Methods

A cross-sectional study was conducted. A total of 116 patients aged 1 month to 15 years with CCHD at Chiang Mai University Hospital between 2015 and 2016 were assessed and 94 patients were enrolled. To determine the prevalence and associated factors of significant albuminuria in CCHD patients, baseline characteristics, oxygen saturation, surgery, hemoglobin (Hb), hematocrit (Hct), spot urine albumin, urine protein, and creatinine were obtained. Binary logistic-regression modeling was used to identify associated factors.

Results

Prevalence of CN in children with CCHD was 58.51% and 92.55% according to albuminuria and proteinuria staging respectively. Prevalence of significant proteinuria, significant albuminuria, and decreased GFR was 88.30%, 41.49% and 31.91% respectively. Participants with significant albuminuria had fewer previous surgeries (p = 0.05), a longer waiting time for surgery (p = 0.02), enalapril usage (p = 0.04), pulmonary hypertension (p = 0.03), higher Hct z-score (p = 0.03) and lower platelet count (p = 0.001) compared with those without significant albuminuria. Using multivariate logistic regression analysis, waiting duration for surgery (p = 0.04), Hct >40% (p = 0.02), and platelet count <290,000/mm3 (p = 0.04) were predictive of microalbuminuria.

Conclusions

Cyanotic nephropathy can be detected in the first decade of life with the presentation of microalbuminuria. High Hct level and low platelet count were identified as a predictor of microalbuminuria, whereas early cardiac surgery decreased the risk of developing significant albuminuria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Meessen H, Litton MA (1953) Morphology of the kidney in morbus caeruleus. AMA Arch Pathol 56:480–487

    CAS  PubMed  Google Scholar 

  2. Dittrich S, Kurschat K, Lange PE (2001) Abnormal rheology in cyanotic congenital heart disease—a factor in non-immune nephropathy. Scand J Urol Nephrol 35:411–415

    Article  CAS  PubMed  Google Scholar 

  3. Agras PI, Derbent M, Ozcay F, Baskin E, Turkoglu S, Aldemir D, Tokel K, Saatci U (2005) Effect of congenital heart disease on renal function in childhood. Nephron Physiol 99:10–15

    Article  Google Scholar 

  4. Zheng J, Yao Y, Han L, Xiao Y (2013) Renal function and injury in infants and young children with congenital heart disease. Pediatr Nephrol 28:99–104

    Article  PubMed  Google Scholar 

  5. Akita H, Matsuoka S, Kuroda Y (1993) Nephropathy in patients with cyanotic congenital heart disease. Tokushima J Exp Med 40:47–53

    CAS  PubMed  Google Scholar 

  6. Inatomi J, Matsuoka K, Fujimaru R, Nakagawa A, Iijima K (2006) Mechanisms of development and progression of cyanotic nephropathy. Pediatr Nephrol 21:1440–1445

    Article  PubMed  Google Scholar 

  7. Dinneen SF, Gerstein HC (1997) The association of microalbuminuria and mortality in non-insulin-dependent diabetes mellitus. A systematic overview of the literature. Arch Intern Med 157:1413–1418

    Article  CAS  PubMed  Google Scholar 

  8. Wachtell K, Ibsen H, Olsen MH, Borch-Johnsen K, Lindholm LH, Mogensen CE, Dahlof B, Devereux RB, Beevers G, de Faire U, Fyhrquist F, Julius S, Kjeldsen SE, Kristianson K, Lederballe-Pedersen O, Nieminen MS, Okin PM, Omvik P, Oparil S, Wedel H, Snapinn SM, Aurup P (2003) Albuminuria and cardiovascular risk in hypertensive patients with left ventricular hypertrophy: the LIFE study. Ann Intern Med 139:901–906

    Article  PubMed  Google Scholar 

  9. Singh A, Satchell SC (2011) Microalbuminuria: causes and implications. Pediatr Nephrol 26:1957–1965

    Article  PubMed  PubMed Central  Google Scholar 

  10. Flanagan MF, Hourihan M, Keane JF (1991) Incidence of renal dysfunction in adults with cyanotic congenital heart disease. Am J Cardiol 68:403–406

    Article  CAS  PubMed  Google Scholar 

  11. Fogo A, Hawkins EP, Berry PL, Glick AD, Chiang ML, MacDonell RC Jr, Ichikawa I (1990) Glomerular hypertrophy in minimal change disease predicts subsequent progression to focal glomerular sclerosis. Kidney Int 38:115–123

    Article  CAS  PubMed  Google Scholar 

  12. Spear GS (1960) Glomerular alterations in cyanotic congenital heart disease. Bull Johns Hopkins Hosp 106:347–367

    CAS  PubMed  Google Scholar 

  13. Spear GS, Kihara I (1964) The glomerulus in cyanotic congenital heart disease: an immunofluorescent study. Bull Johns Hopkins Hosp 115:481–493

    CAS  PubMed  Google Scholar 

  14. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group (2013) KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl 3:1–150

    Article  Google Scholar 

  15. Schwartz GJ, Munoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, Furth SL (2009) New equations to estimate GFR in children with CKD. J Am Soc Nephrol 20:629–637

    Article  PubMed  PubMed Central  Google Scholar 

  16. Flegal KM, Cole TJ (2013) Construction of LMS parameters for the Centers for Disease Control and Prevention 2000 growth charts. Natl Health Stat Report (63):1–3

  17. National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents (2004) The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics 114(2 Suppl 4th Report):555–576

    Article  Google Scholar 

  18. Dallman P (1977) Blood and blood-forming tissue. In: Rudolph A (ed) Pediatrics. Appleton-Century-Crofts, Norwalk, CT

    Google Scholar 

  19. Galie N, Humbert M, Vachiery JL, Gibbs S, Lang I, Torbicki A, Simonneau G, Peacock A, Vonk Noordegraaf A, Beghetti M, Ghofrani A, Gomez Sanchez MA, Hansmann G, Klepetko W, Lancellotti P, Matucci M, McDonagh T, Pierard LA, Trindade PT, Zompatori M, Hoeper M, Aboyans V, Vaz Carneiro A, Achenbach S, Agewall S, Allanore Y, Asteggiano R, Paolo Badano L, Albert Barbera J, Bouvaist H, Bueno H, Byrne RA, Carerj S, Castro G, Erol C, Falk V, Funck-Brentano C, Gorenflo M, Granton J, Iung B, Kiely DG, Kirchhof P, Kjellstrom B, Landmesser U, Lekakis J, Lionis C, Lip GY, Orfanos SE, Park MH, Piepoli MF, Ponikowski P, Revel MP, Rigau D, Rosenkranz S, Voller H, Luis Zamorano J (2016) 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J 37:67–119

    Article  PubMed  Google Scholar 

  20. Krull F, Ehrich JH, Wurster U, Toel U, Rothganger S, Luhmer I (1991) Renal involvement in patients with congenital cyanotic heart disease. Acta Paediatr Scand 80:1214–1219

    Article  CAS  PubMed  Google Scholar 

  21. Birn H, Christensen EI (2006) Renal albumin absorption in physiology and pathology. Kidney Int 69:440–449

    Article  CAS  PubMed  Google Scholar 

  22. Dimopoulos K, Diller GP, Koltsida E, Pijuan-Domenech A, Papadopoulou SA, Babu-Narayan SV, Salukhe TV, Piepoli MF, Poole-Wilson PA, Best N, Francis DP, Gatzoulis MA (2008) Prevalence, predictors, and prognostic value of renal dysfunction in adults with congenital heart disease. Circulation 117:2320–2328

    Article  PubMed  Google Scholar 

  23. Eckardt KU, Hartmann W, Vetter U, Pohlandt F, Burghardt R, Kurtz A (1990) Serum immunoreactive erythropoietin of children in health and disease. Eur J Pediatr 149:459–464

    Article  CAS  PubMed  Google Scholar 

  24. Scott HW Jr, Elliott SR 2nd (1950) Renal hemodynamics in congenital cyanotic heart disease. Bull Johns Hopkins Hosp 86:58–71

    PubMed  Google Scholar 

  25. Malizia E (1956) Renal function and hemodynamics in primary and secondary polycythemia. Acta Med Scand 154:399–406

    Article  CAS  PubMed  Google Scholar 

  26. Becker EL, Schilling JA, Harvey RB (1957) Renal function in man acclimatized to high altitude. J Appl Physiol 10:79–80

    Article  CAS  PubMed  Google Scholar 

  27. Dent GA, Herman JH, Siegel JE (2007) Laboratory hematology. In: Kahn MJ, Gregory SA (eds) American Society of Hematology self-assessment program. The American Society of Hematology, Washington, DC, pp 444–465

  28. Takahashi S, Ooya K, Wada N, Inagaki T, Takana Y, Saito A, Nagata M, Harada K (2003) Partial exchange transfusion improved renal function and proteinuria in a patient with cyanotic heart disease nephropathy. Clin Nephrol 60:222–223

    Article  CAS  PubMed  Google Scholar 

  29. Omonuwa KO, Talwar A, Dedopoulos S, Mailloux LU (2009) Repeated phlebotomies improve and stabilise renal function in cyanotic nephropathy. BMJ Case Rep. https://doi.org/10.1136/bcr.10.2008.1084

  30. Linderkamp O, Klose HJ, Betke K, Brodherr-Heberlein S, Buhlmeyer K, Kelson S, Sengespeik C (1979) Increased blood viscosity in patients with cyanotic congenital heart disease and iron deficiency. J Pediatr 95:567–569

    Article  CAS  PubMed  Google Scholar 

  31. Broberg CS, Bax BE, Okonko DO, Rampling MW, Bayne S, Harries C, Davidson SJ, Uebing A, Khan AA, Thein S, Gibbs JS, Burman J, Gatzoulis MA (2006) Blood viscosity and its relationship to iron deficiency, symptoms, and exercise capacity in adults with cyanotic congenital heart disease. J Am Coll Cardiol 48:356–365

    Article  PubMed  Google Scholar 

  32. Lill MC, Perloff JK, Child JS (2006) Pathogenesis of thrombocytopenia in cyanotic congenital heart disease. Am J Cardiol 98:254–258

    Article  CAS  PubMed  Google Scholar 

  33. Awad H, el-Safty I, Abdel-Gawad M, el-Said S (2003) Glomerular and tubular dysfunction in children with congenital cyanotic heart disease: effect of palliative surgery. Am J Med Sci 325:110–114

    Article  PubMed  Google Scholar 

  34. Passwell J, Orda S, Modan M, Shem-Tov A, Aladjem A, Boichis H (1976) Abnormal renal functions in cyanotic congenital heart disease. Arch Dis Child 51:803–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fine LG, Orphanides C, Norman JT (1998) Progressive renal disease: the chronic hypoxia hypothesis. Kidney Int Suppl 65:S74–S78

    CAS  PubMed  Google Scholar 

  36. Ghafari S, Malaki M (2011) Truncus arteriosus: a major cause of proteinuria in children. J Cardiovasc Dis Res 2:237–240

    Article  PubMed  PubMed Central  Google Scholar 

  37. Spear GS (1964) The glomerulus in cyanotic congenital heart disease and primary pulmonary hypertension. A review. Nephron 1:238–248

    Article  CAS  PubMed  Google Scholar 

  38. Hida K, Wada J, Yamasaki H, Nagake Y, Zhang H, Sugiyama H, Shikata K, Makino H (2002) Cyanotic congenital heart disease associated with glomerulomegaly and focal segmental glomerulosclerosis: remission of nephrotic syndrome with angiotensin converting enzyme inhibitor. Nephrol Dial Transplant 17:144–147

    Article  PubMed  Google Scholar 

  39. Fujimoto Y, Matsushima M, Tsuzuki K, Okada M, Shibata M, Yanase Y, Usui K, Nagashima M (2002) Nephropathy of cyanotic congenital heart disease: clinical characteristics and effectiveness of an angiotensin-converting enzyme inhibitor. Clin Nephrol 58:95–102

    Article  CAS  PubMed  Google Scholar 

  40. Filler G, Lipshultz SE (2012) Why multidisciplinary clinics should be the standard for treating chronic kidney disease. Pediatr Nephrol 27:1831–1834

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the Faculty of Medicine, Chiang Mai University. The authors would like to thank the pediatric cardiology nurses for assistance with urine collection, and the children and parents who volunteered to participate in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nattaphorn Hongsawong.

Ethics declarations

Informed consent

Written informed consent was obtained from all parents. The study has been approved by the Medical Ethics Committee of Chiang Mai University.

Conflicts of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hongsawong, N., Khamdee, P., Silvilairat, S. et al. Prevalence and associated factors of renal dysfunction and proteinuria in cyanotic congenital heart disease. Pediatr Nephrol 33, 493–501 (2018). https://doi.org/10.1007/s00467-017-3804-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-017-3804-3

Keywords

Navigation