Skip to main content

Advertisement

Log in

Muscle wasting in chronic kidney disease

Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Loss of lean body mass is a relevant component of the cachexia, or protein energy wasting (PEW), syndrome. Reduced muscle mass seems to be the most solid criterion for the presence of cachexia/PEW in patients with chronic kidney disease (CKD), and those with greater muscle mass loss have a higher risk of death. Children with CKD have many risk factors for lean mass and muscle wasting, including poor appetite, inflammation, growth hormone resistance, and metabolic acidosis. Mortality risks in patients with CKD increases as body mass index (BMI) and weight decreases. However, data regarding cachexia/PEW and muscle wasting in children with CKD is scarce due to lack of consensus in diagnostic criteria and an appropriate investigative methodology. Further research is urgently needed to address this important complication in the pediatric CKD setting, which may have fundamental impact on clinical outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  1. Ikizler TA, Cano NJ, Franch H, Fouque D, Himmelfarb J, Kalantar-Zadeh K, Kuhlmann MK, Stenvinkel P, Ter Weee P, Teta D, Wang AY, Wanner C, International Society of Renal N, Metabolism (2013) Prevention and treatment of protein energy wasting in chronic kidney disease patients: a consensus statement by the International Society of Renal Nutrition and Metabolism. Kidney Int 84:1096–1107

    Article  CAS  PubMed  Google Scholar 

  2. Gracia-Iguacel C, Gonzalez-Parra E, Barril-Cuadrado G, Sanchez R, Egido J, Ortiz-Arduan A, Carrero JJ (2014) Defining protein-energy wasting syndrome in chronic kidney disease: prevalence and clinical implications. Nefrologia 34:507–519

    PubMed  Google Scholar 

  3. Mak RH, Cheung WW, Zhan JY, Shen Q, Foster BJ (2012) Cachexia and protein-energy wasting in children with chronic kidney disease. Pediatr Nephrol 27:173–181

    Article  PubMed  Google Scholar 

  4. Mak RH, Ikizler AT, Kovesdy CP, Raj DS, Stenvinkel P, Kalantar-Zadeh K (2011) Wasting in chronic kidney disease. J Cachexia Sarcopenia Muscle 2:9–25

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ingulli EG, Mak RH (2014) Growth in children with chronic kidney disease: role of nutrition, growth hormone, dialysis, and steroids. Curr Opin Pediatr 26:187–192

    Article  CAS  PubMed  Google Scholar 

  6. Kalantar-Zadeh K, Ikizler TA, Block G, Avram MM, Kopple JD (2003) Malnutrition-inflammation complex syndrome in dialysis patients: causes and consequences. Am J Kidney Dis 42:864–881

    Article  PubMed  Google Scholar 

  7. Mak RH (2016) Cachexia in children with chronic kidney disease: challenges in diagnosis and treatment. Curr Opin Support Palliat Care.

  8. Mak RH, Cheung W, Cone RD, Marks DL (2006) Leptin and inflammation-associated cachexia in chronic kidney disease. Kidney Int 69:794–797

    Article  CAS  PubMed  Google Scholar 

  9. Mitch WE (2002) Malnutrition: a frequent misdiagnosis for hemodialysis patients. J Clin Invest 110:437–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mitch WE (2002) Insights into the abnormalities of chronic renal disease attributed to malnutrition. J Am Soc Nephrol 13(Suppl 1):S22–S27

    CAS  PubMed  Google Scholar 

  11. Abraham AG, Mak RH, Mitsnefes M, White C, Moxey-Mims M, Warady B, Furth SL (2014) Protein energy wasting in children with chronic kidney disease. Pediatr Nephrol 29:1231–1238

    Article  PubMed  PubMed Central  Google Scholar 

  12. Evans WJ, Morley JE, Argiles J, Bales C, Baracos V, Guttridge D, Jatoi A, Kalantar-Zadeh K, Lochs H, Mantovani G, Marks D, Mitch WE, Muscaritoli M, Najand A, Ponikowski P, Rossi Fanelli F, Schambelan M, Schols A, Schuster M, Thomas D, Wolfe R, Anker SD (2008) Cachexia: a new definition. Clin Nutr 27:793–799

    Article  CAS  PubMed  Google Scholar 

  13. Cheung W, Yu PX, Little BM, Cone RD, Marks DL, Mak RH (2005) Role of leptin and melanocortin signaling in uremia-associated cachexia. J Clin Invest 115:1659–1665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Muscaritoli M, Anker SD, Argiles J, Aversa Z, Bauer JM, Biolo G, Boirie Y, Bosaeus I, Cederholm T, Costelli P, Fearon KC, Laviano A, Maggio M, Rossi Fanelli F, Schneider SM, Schols A, Sieber CC (2010) Consensus definition of sarcopenia, cachexia and pre-cachexia: joint document elaborated by special interest groups (SIG) cachexia-anorexia in chronic wasting diseases and nutrition in geriatrics. Clin Nutr 29:154–159

    Article  CAS  PubMed  Google Scholar 

  15. Obi Y, Qader H, Kovesdy CP, Kalantar-Zadeh K (2015) Latest consensus and update on protein-energy wasting in chronic kidney disease. Curr Opin Clin Nutr Metab Care 18:254–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fouque D, Kalantar-Zadeh K, Kopple J, Cano N, Chauveau P, Cuppari L, Franch H, Guarnieri G, Ikizler TA, Kaysen G, Lindholm B, Massy Z, Mitch W, Pineda E, Stenvinkel P, Trevino-Becerra A, Wanner C (2008) A proposed nomenclature and diagnostic criteria for protein-energy wasting in acute and chronic kidney disease. Kidney Int 73:391–398

    Article  CAS  PubMed  Google Scholar 

  17. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Martin FC, Michel JP, Rolland Y, Schneider SM, Topinkova E, Vandewoude M, Zamboni M, European Working Group on Sarcopenia in Older P (2010) Sarcopenia: European consensus on definition and diagnosis: report of the European Working group on sarcopenia in older people. Age Ageing 39:412–423

    Article  PubMed  PubMed Central  Google Scholar 

  18. Foley RN, Wang C, Ishani A, Collins AJ, Murray AM (2007) Kidney function and sarcopenia in the United States general population: NHANES III. Am J Nephrol 27:279–286

    Article  PubMed  Google Scholar 

  19. Kim JK, Choi SR, Choi MJ, Kim SG, Lee YK, Noh JW, Kim HJ, Song YR (2014) Prevalence of and factors associated with sarcopenia in elderly patients with end-stage renal disease. Clin Nutr 33:64–68

    Article  PubMed  Google Scholar 

  20. Stenvinkel P, Carrero JJ, von Walden F, Ikizler TA, Nader GA (2016) Muscle wasting in end-stage renal disease promulgates premature death: established, emerging and potential novel treatment strategies. Nephrol Dial Transplant 31:1070–1077

    Article  PubMed  Google Scholar 

  21. Nourbakhsh N, Rhee CM, Kalantar-Zadeh K (2014) Protein-energy wasting and uremic failure to thrive in children with chronic kidney disease: they are not small adults. Pediatr Nephrol 29:2249–2252

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kovesdy CP, Kopple JD, Kalantar-Zadeh K (2013) Management of protein-energy wasting in non-dialysis-dependent chronic kidney disease: reconciling low protein intake with nutritional therapy. Am J Clin Nutr 97:1163–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kopple JD, Berg R, Houser H, Steinman TI, Teschan P (1989) Nutritional status of patients with different levels of chronic renal insufficiency. Modification of diet in renal disease (MDRD) study group. Kidney Int Suppl 27:S184–S194

    CAS  PubMed  Google Scholar 

  24. Kopple JD, Greene T, Chumlea WC, Hollinger D, Maroni BJ, Merrill D, Scherch LK, Schulman G, Wang SR, Zimmer GS (2000) Relationship between nutritional status and the glomerular filtration rate: results from the MDRD study. Kidney Int 57:1688–1703

    Article  CAS  PubMed  Google Scholar 

  25. Fouque D, Pelletier S, Mafra D, Chauveau P (2011) Nutrition and chronic kidney disease. Kidney Int 80:348–357

    Article  CAS  PubMed  Google Scholar 

  26. Lawson JA, Lazarus R, Kelly JJ (2001) Prevalence and prognostic significance of malnutrition in chronic renal insufficiency. J Ren Nutr 11:16–22

    Article  CAS  PubMed  Google Scholar 

  27. Campbell KL, Ash S, Bauer JD, Davies PS (2007) Evaluation of nutrition assessment tools compared with body cell mass for the assessment of malnutrition in chronic kidney disease. J Ren Nutr 17:189–195

    Article  PubMed  Google Scholar 

  28. Mazairac AH, de Wit GA, Grooteman MP, Penne EL, van der Weerd NC, van den Dorpel MA, Nube MJ, Levesque R, Ter Wee PM, Bots ML, Blankestijn PJ, investigators C (2011) A composite score of protein-energy nutritional status predicts mortality in haemodialysis patients no better than its individual components. Nephrol Dial Transplant 26:1962–1967

    Article  PubMed  Google Scholar 

  29. Carrero JJ, Chmielewski M, Axelsson J, Snaedal S, Heimburger O, Barany P, Suliman ME, Lindholm B, Stenvinkel P, Qureshi AR (2008) Muscle atrophy, inflammation and clinical outcome in incident and prevalent dialysis patients. Clin Nutr 27:557–564

    Article  PubMed  Google Scholar 

  30. Gracia-Iguacel C, Gonzalez-Parra E, Perez-Gomez MV, Mahillo I, Egido J, Ortiz A, Carrero JJ (2013) Prevalence of protein-energy wasting syndrome and its association with mortality in haemodialysis patients in a centre in Spain. Nefrologia 33:495–505

    PubMed  Google Scholar 

  31. Kanazawa Y, Nakao T, Murai S, Okada T, Matsumoto H (2016) Diagnosis and prevalence of protein-energy wasting and its association with mortality in Japanese Haemodialysis patients. Nephrology. doi:10.1111/nep.12814

    PubMed  PubMed Central  Google Scholar 

  32. Isoyama N, Qureshi AR, Avesani CM, Lindholm B, Barany P, Heimburger O, Cederholm T, Stenvinkel P, Carrero JJ (2014) Comparative associations of muscle mass and muscle strength with mortality in dialysis patients. Clin J Am Soc Nephrol 9:1720–1728

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kang SH, Park JW, Yoon KW, Do JY (2013) Limb/trunk lean mass ratio as a risk factor for mortality in peritoneal dialysis patients. J Ren Nutr 23:315–323

    Article  PubMed  Google Scholar 

  34. Lamarca F, Carrero JJ, Rodrigues JC, Bigogno FG, Fetter RL, Avesani CM (2014) Prevalence of sarcopenia in elderly maintenance hemodialysis patients: the impact of different diagnostic criteria. J Nutr Health Aging 18:710–717

    Article  CAS  PubMed  Google Scholar 

  35. Rosenberger J, Kissova V, Majernikova M, Straussova Z, Boldizsar J (2014) Body composition monitor assessing malnutrition in the hemodialysis population independently predicts mortality. J Ren Nutr 24:172–176

    Article  PubMed  Google Scholar 

  36. Rees L, Jones H (2013) Nutritional management and growth in children with chronic kidney disease. Pediatr Nephrol 28:527–536

    Article  PubMed  Google Scholar 

  37. Abitbol CL, Zilleruelo G, Montane B, Strauss J (1993) Growth of uremic infants on forced feeding regimens. Pediatr Nephrol 7:173–177

    Article  CAS  PubMed  Google Scholar 

  38. Betts PR, Magrath G (1974) Growth pattern and dietary intake of children with chronic renal insufficiency. Br Med J 2:189–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mitch WE (2005) Cachexia in chronic kidney disease: a link to defective central nervous system control of appetite. J Clin Invest 115:1476–1478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bossola M, Tazza L, Luciani G (2009) Mechanisms and treatment of anorexia in end-stage renal disease patients on hemodialysis. J Ren Nutr 19:2–9

    Article  CAS  PubMed  Google Scholar 

  41. Chazot C (2009) Why are chronic kidney disease patients anorexic and what can be done about it? Semin Nephrol 29:15–23

    Article  PubMed  Google Scholar 

  42. Gunta SS, Mak RH (2013) Ghrelin and leptin pathophysiology in chronic kidney disease. Pediatr Nephrol 28:611–616

    Article  PubMed  Google Scholar 

  43. Ayestaran FW, Schneider MF, Kaskel FJ, Srivaths PR, Seo-Mayer PW, Moxey-Mims M, Furth SL, Warady BA, Greenbaum LA (2016) Perceived appetite and clinical outcomes in children with chronic kidney disease. Pediatr Nephrol 31:1121–1127

    Article  PubMed  PubMed Central  Google Scholar 

  44. Foster BJ, Kalkwarf HJ, Shults J, Zemel BS, Wetzsteon RJ, Thayu M, Foerster DL, Leonard MB (2011) Association of chronic kidney disease with muscle deficits in children. J Am Soc Nephrol 22:377–386

    Article  PubMed  PubMed Central  Google Scholar 

  45. Rashid R, Neill E, Smith W, King D, Beattie TJ, Murphy A, Ramage IJ, Maxwell H, Ahmed SF (2006) Body composition and nutritional intake in children with chronic kidney disease. Pediatr Nephrol 21:1730–1738

    Article  PubMed  Google Scholar 

  46. Kalantar-Zadeh K, Streja E, Molnar MZ, Lukowsky LR, Krishnan M, Kovesdy CP, Greenland S (2012) Mortality prediction by surrogates of body composition: an examination of the obesity paradox in hemodialysis patients using composite ranking score analysis. Am J Epidemiol 175:793–803

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lu JL, Molnar MZ, Naseer A, Mikkelsen MK, Kalantar-Zadeh K, Kovesdy CP (2015) Association of age and BMI with kidney function and mortality: a cohort study. Lancet Diabetes Endocrinol 3:704–714

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lu JL, Kalantar-Zadeh K, Ma JZ, Quarles LD, Kovesdy CP (2014) Association of BMI with outcomes in patients with CKD. J Am Soc Nephrol 25:2088–2096

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ahmadi SF, Zahmatkesh G, Ahmadi E, Streja E, Rhee CM, Gillen DL, De Nicola L, Minutolo R, Ricardo AC, Kovesdy CP, Kalantar-Zadeh K (2015) Association of Body Mass Index with clinical outcomes in non-dialysis-dependent chronic kidney disease: a systematic review and meta-analysis. Cardiorenal Med 6:37–49

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wilson FP, Xie D, Anderson AH, Leonard MB, Reese PP, Delafontaine P, Horwitz E, Kallem R, Navaneethan S, Ojo A, Porter AC, Sondheimer JH, Sweeney HL, Townsend RR, Feldman HI, Investigators CS (2014) Urinary creatinine excretion, bioelectrical impedance analysis, and clinical outcomes in patients with CKD: the CRIC study. Clin J Am Soc Nephrol 9:2095–2103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pereira RA, Cordeiro AC, Avesani CM, Carrero JJ, Lindholm B, Amparo FC, Amodeo C, Cuppari L, Kamimura MA (2015) Sarcopenia in chronic kidney disease on conservative therapy: prevalence and association with mortality. Nephrol Dial Transplant 30:1718–1725

    Article  CAS  PubMed  Google Scholar 

  52. Schiffrin EL, Lipman ML, Mann JF (2007) Chronic kidney disease: effects on the cardiovascular system. Circulation 116:85–97

    Article  PubMed  Google Scholar 

  53. Cheung WW, Paik KH, Mak RH (2010) Inflammation and cachexia in chronic kidney disease. Pediatr Nephrol 25:711–724

    Article  PubMed  Google Scholar 

  54. Mak RH, Cheung W (2007) Cachexia in chronic kidney disease: role of inflammation and neuropeptide signaling. Curr Opin Nephrol Hypertens 16:27–31

    Article  CAS  PubMed  Google Scholar 

  55. Pecoits-Filho R, Sylvestre LC, Stenvinkel P (2005) Chronic kidney disease and inflammation in pediatric patients: from bench to playground. Pediatr Nephrol 20:714–720

    Article  PubMed  Google Scholar 

  56. Zyga S, Christopoulou G, Malliarou M (2011) Malnutrition-inflammation-atherosclerosis syndrome in patients with end-stage renal disease. J Ren Care 37:12–15

    Article  PubMed  Google Scholar 

  57. Lowrie EG, Lew NL (1990) Death risk in hemodialysis patients: the predictive value of commonly measured variables and an evaluation of death rate differences between facilities. Am J Kidney Dis 15:458–482

    Article  CAS  PubMed  Google Scholar 

  58. Wong CS, Hingorani S, Gillen DL, Sherrard DJ, Watkins SL, Brandt JR, Ball A, Stehman-Breen CO (2002) Hypoalbuminemia and risk of death in pediatric patients with end-stage renal disease. Kidney Int 61:630–637

    Article  PubMed  Google Scholar 

  59. Jones CH, Wells L, Stoves J, Farquhar F, Woodrow G (2002) Can a reduction in extracellular fluid volume result in increased serum albumin in peritoneal dialysis patients? Am J Kidney Dis 39:872–875

    Article  PubMed  Google Scholar 

  60. Kalantar-Zadeh K, Kopple JD (2001) Relative contributions of nutrition and inflammation to clinical outcome in dialysis patients. Am J Kidney Dis 38:1343–1350

    Article  CAS  PubMed  Google Scholar 

  61. Warady BA, Abraham AG, Schwartz GJ, Wong CS, Munoz A, Betoko A, Mitsnefes M, Kaskel F, Greenbaum LA, Mak RH, Flynn J, Moxey-Mims MM, Furth S (2015) Predictors of rapid progression of glomerular and Nonglomerular kidney disease in children and adolescents: the chronic kidney disease in children (CKiD) cohort. Am J Kidney Dis 65:878–888

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ku E, Glidden DV, Hsu CY, Portale AA, Grimes B, Johansen KL (2016) Association of Body Mass Index with patient-centered outcomes in children with ESRD. J Am Soc Nephrol 27:551–558

    Article  CAS  PubMed  Google Scholar 

  63. Bonthuis M, van Stralen KJ, Verrina E, Groothoff JW, Alonso Melgar A, Edefonti A, Fischbach M, Mendes P, Molchanova EA, Paripovic D, Peco-Antic A, Printza N, Rees L, Rubik J, Stefanidis CJ, Sinha MD, Zagozdzon I, Jager KJ, Schaefer F (2013) Underweight, overweight and obesity in paediatric dialysis and renal transplant patients. Nephrol Dial transplant 28 Suppl 4:iv195-iv204.

  64. Foster BJ, McCauley L, Mak RH (2012) Nutrition in infants and very young children with chronic kidney disease. Pediatr Nephrol 27:1427–1439

    Article  PubMed  Google Scholar 

  65. DiGirolamo DJ, Kiel DP, Esser KA (2013) Bone and skeletal muscle: neighbors with close ties. J Bone Miner Res 28:1509–1518

    Article  PubMed  PubMed Central  Google Scholar 

  66. Bismuth K, Relaix F (2010) Genetic regulation of skeletal muscle development. Exp Cell Res 316:3081–3086

    Article  CAS  PubMed  Google Scholar 

  67. Mavalli MD, DiGirolamo DJ, Fan Y, Riddle RC, Campbell KS, van Groen T, Frank SJ, Sperling MA, Esser KA, Bamman MM, Clemens TL (2010) Distinct growth hormone receptor signaling modes regulate skeletal muscle development and insulin sensitivity in mice. J Clin Invest 120:4007–4020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Otto A, Patel K (2010) Signalling and the control of skeletal muscle size. Exp Cell Res 316:3059–3066

    Article  CAS  PubMed  Google Scholar 

  69. Avin KG, Moorthi RN (2015) Bone is not alone: the effects of skeletal muscle dysfunction in chronic kidney disease. Curr Osteoporos Rep 13:173–179

    Article  PubMed  PubMed Central  Google Scholar 

  70. Tsampalieros A, Kalkwarf HJ, Wetzsteon RJ, Shults J, Zemel BS, Foster BJ, Foerster DL, Leonard MB (2013) Changes in bone structure and the muscle-bone unit in children with chronic kidney disease. Kidney Int 83:495–502

    Article  CAS  PubMed  Google Scholar 

  71. Wetzsteon RJ, Kalkwarf HJ, Shults J, Zemel BS, Foster BJ, Griffin L, Strife CF, Foerster DL, Jean-Pierre DK, Leonard MB (2011) Volumetric bone mineral density and bone structure in childhood chronic kidney disease. J Bone Miner Res 26:2235–2244

    Article  PubMed  PubMed Central  Google Scholar 

  72. Castaneda C, Gordon PL, Parker RC, Uhlin KL, Roubenoff R, Levey AS (2004) Resistance training to reduce the malnutrition-inflammation complex syndrome of chronic kidney disease. Am J Kidney Dis 43:607–616

    Article  PubMed  Google Scholar 

  73. Heiwe S, Jacobson SH (2011) Exercise training for adults with chronic kidney disease. Cochrane database Syst rev:CD003236.

  74. Clapp EL, Bevington A, Smith AC (2012) Exercise for children with chronic kidney disease and end-stage renal disease. Pediatr Nephrol 27:165–172

    Article  PubMed  Google Scholar 

  75. Lau KK, Obeid J, Breithaupt P, Belostotsky V, Arora S, Nguyen T, Timmons BW (2015) Effects of acute exercise on markers of inflammation in pediatric chronic kidney disease: a pilot study. Pediatr Nephrol 30:615–621

    Article  PubMed  Google Scholar 

  76. Clark SL, Denburg MR, Furth SL (2016) Physical activity and screen time in adolescents in the chronic kidney disease in children (CKiD) cohort. Pediatr Nephrol 31:801–808

    Article  PubMed  Google Scholar 

  77. Paglialonga F, Lopopolo A, Scarfia RV, Consolo S, Galli MA, Salera S, Grassi MR, Brivio A, Edefonti A (2014) Intradialytic cycling in children and young adults on chronic hemodialysis. Pediatr Nephrol 29:431–438

    Article  PubMed  Google Scholar 

  78. Cheung WW, Mak RH (2010) Ghrelin in chronic kidney disease. Int J Pept 2010

  79. Mak RH, Cheung WW, Gertler A (2014) Exploiting the therapeutic potential of leptin signaling in cachexia. Curr Opin Support Palliat Care 8:352–357

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert H. Mak.

Ethics declarations

Conflicts of interest

None.

Financial support and sponsorship

RHK Mak is supported by NIH grants U01 DK-03012 and R24HD050837​. EA Oliveira is supported by grants CAPES 2746–15-8 and FAPEMIG PPM-00228-15.

Additional information

Answers to multiple choice questions

1. d

2. e

3. c

4. c

5. e

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, E.A., Cheung, W.W., Toma, K.G. et al. Muscle wasting in chronic kidney disease. Pediatr Nephrol 33, 789–798 (2018). https://doi.org/10.1007/s00467-017-3684-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-017-3684-6

Keywords

Navigation