Skip to main content

Advertisement

Log in

Endothelial dysfunction during long-term follow-up in children with STEC hemolytic-uremic syndrome

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

Shiga-toxin-producing Escherichia coli (STEC)-associated hemolytic-uremic syndrome (HUS) is a major cause of acute kidney injury (AKI), especially in children. Its long-term outcome with respect to endothelial damage remains largely elusive.

Methods

This was a cross-sectional study in 26 children who had suffered from STEC-HUS in the past and achieved a complete recovery of renal function (eGFR >90 ml/min/1.73 m2). Skin microcirculation after local heating was assessed by laser Doppler fluximetry, carotid-femoral pulse wave velocity (PWV), carotid intima media thickness (cIMT), 24-h ambulatory blood pressure, and angiopoietin (Ang) 1 and 2 serum levels after a median follow-up period of 6.1 years. The results were compared to those of healthy controls.

Results

All patients were normotensive, mean eGFR was 102 (range 91–154) ml/min/1.73 m2, and 13 of the 26 patients showed albuminuria. Endothelial dysfunction was present in 13 patients, and the mean serum Ang2/Ang1 ratio was increased compared to healthy children (each p < 0.05). In contrast, mean values for PWV and cIMT in the patients did not differ from those of the controls. Endothelial dysfunction was significantly associated with younger age at STEC-HUS manifestation, time after HUS, and presence of albuminuria.

Conclusion

The results of this study highlight the need for long-term follow-up of STEC-HUS patients even after complete recovery of eGFR and lack of hypertension with respect to microvascular damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mele C, Remuzzi G, Noris M (2014) Hemolytic uremic syndrome. Semin Immunopathol 36:399–420

    Article  CAS  PubMed  Google Scholar 

  2. Page A, Tarr P, Watkins S, Rajwans N, Petruzziello Pellegrini T, Marsden P, Kain K, Liles WC (2013) Dysregulation of angiopoietin 1 and 2 in escherichia coli O157:H7 infection and the hemolytic-uremic syndrome. J Infect Dis 208:929–933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gagnadoux MF, Habib R, Gubler MC, Bacri JL, Broyer M (1996) Long-term (15–25 years) outcome of childhood hemolytic-uremic syndrome. Clin Nephrol 46:39–41

    CAS  PubMed  Google Scholar 

  4. Garg AX, Suri RS, Barrowman N, Rehman F, Matsell D, Rosas-Arellano MP, Salvadori M, Haynes RB, Clark WF (2003) Long-term renal prognosis of diarrhea-associated hemolytic uremic syndrome: a systematic review, meta-analysis, and meta-regression. JAMA 290:1360–1370

    Article  CAS  PubMed  Google Scholar 

  5. Martín Navarro J, Petkov Stoyanov V, Gutiérrez Sánchez MJ, Justo Ávila P, Díaz Díaz D (2013) Long-term renal prognosis of typical haemolytic-uraemic syndrome suffered in infancy. Nefrologia 33:433–435

    PubMed  Google Scholar 

  6. Spinale J, Ruebner R, Copelovitch L, Kaplan B (2013) Long-term outcomes of Shiga toxin hemolytic uremic syndrome. Pediatr Nephrol 28:2097–2105

    Article  PubMed  Google Scholar 

  7. Vikse BE, Irgens LM, Leivestad T, Skjaerven R, Iversen BM (2008) Preeclampsia and the risk of end-stage renal disease. N Engl J Med 359:800–809

    Article  CAS  PubMed  Google Scholar 

  8. Orabona R, Sciatti E, Vizzardi E, Bonadei I, Valcamonico A, Metra M, Frusca T (2017) Endothelial dysfunction and vascular stiffness in women with a previous pregnancy complicated by early or late pre-eclampsia. Ultrasound Obstet Gynecol. doi:10.1002/uog.15893

    Google Scholar 

  9. Heimhalt-El Hamriti M, Schreiver C, Noerenberg A, Scheffler J, Jacoby U, Haffner D, Fischer D (2013) Impaired skin microcirculation in paediatric patients with type 1 diabetes mellitus. Cardiovasc Diabetol 12:115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fischer D, Schreiver C, Heimhalt M, Noerenberg A, Haffner D (2012) Pediatric reference values of carotid-femoral pulse wave velocity determined with an oscillometric device. J Hypertens 30:2159–2167

    Article  CAS  PubMed  Google Scholar 

  11. Doyon A, Kracht D, Bayazit AK, Deveci M, Duzova A, Krmar RT, Litwin M, Niemirska A, Oguz B, Schmidt BM, Sozeri B, Querfeld U, Melk A, Schaefer F, Wuhl E, 4C Study Consortium (2013) Carotid artery intima-media thickness and distensibility in children and adolescents: Reference values and role of body dimensions. Hypertension 62:550–556

    Article  CAS  PubMed  Google Scholar 

  12. Shroff RC, Price KL, Kolatsi-Joannou M, Todd AF, Wells D, Deanfield J, Johnson RJ, Rees L, Woolf AS, Long DA (2013) Circulating angiopoietin-2 is a marker for early cardiovascular disease in children on chronic dialysis. PLoS One 8:e56273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Neuhauser HK, Thamm M, Ellert U, Hense HW, Rosario AS (2011) Blood pressure percentiles by age and height from nonoverweight children and adolescents in Germany. Pediatrics 127:e978–e988

    Article  PubMed  Google Scholar 

  14. Wuhl E, Witte K, Soergel M, Mehls O, Schaefer F, German Working Group on Pediatric Hypertension (2002) Distribution of 24-h ambulatory blood pressure in children: normalized reference values and role of body dimensions. J Hypertens 20:1995–2007

    Article  PubMed  Google Scholar 

  15. Schwartz GJ, Munoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, Furth SL (2009) New equations to estimate GFR in children with CKD. J Am Soc Nephrol 20:629–637

    Article  PubMed  PubMed Central  Google Scholar 

  16. Pollack MM, Ruttimann UE, Getson PR (1988) Pediatric risk of mortality (PRISM) score. Crit Care Med 16:1110–1116

    Article  CAS  PubMed  Google Scholar 

  17. Scheiring J, Rosales A, Zimmerhackl L (2010) Clinical practice. today’s understanding of the haemolytic uraemic syndrome. Eur J Pediatr 169:7–13

    Article  PubMed  Google Scholar 

  18. Nester C (2013) Multifaceted hemolytic uremic syndrome in pediatrics. Blood Purif 35:86–92

    Article  PubMed  Google Scholar 

  19. Rosales A, Hofer J, Zimmerhackl LB, Jungraithmayr TC, Riedl M, Giner T, Strasak A, Orth-Holler D, Wurzner R, Karch H, German–Austrian HUS Study Group (2012) Need for long-term follow-up in enterohemorrhagic Escherichia coli-associated hemolytic uremic syndrome due to late-emerging sequelae. Clin Infect Dis 54:1413–1421

    Article  PubMed  Google Scholar 

  20. Tonshoff B, Sammet A, Sanden I, Mehls O, Waldherr R, Scharer K (1994) Outcome and prognostic determinants in the hemolytic uremic syndrome of children. Nephron 68:63–70

    Article  CAS  PubMed  Google Scholar 

  21. Roustit M, Cracowski JL (2012) Non-invasive assessment of skin microvascular function in humans: an insight into methods. Microcirculation 19:47–64

    Article  PubMed  Google Scholar 

  22. Khan F, Elhadd TA, Greene SA, Belch JJ (2000) Impaired skin microvascular function in children, adolescents, and young adults with type 1 diabetes. Diabetes Care 23:215–220

    Article  CAS  PubMed  Google Scholar 

  23. Cracowski JL, Minson CT, Salvat-Melis M, Halliwill JR (2006) Methodological issues in the assessment of skin microvascular endothelial function in humans. Trends Pharmacol Sci 27:503–508

    Article  CAS  PubMed  Google Scholar 

  24. Cracowski JL, Roustit M (2015) Current methods to assess human cutaneous blood flow. an updated focus on laser based-techniques. Microcirculation 23:337–344

    Article  Google Scholar 

  25. Roustit M, Cracowski JL (2013) Assessment of endothelial and neurovascular function in human skin microcirculation. Trends Pharmacol Sci 34:373–384

    Article  CAS  PubMed  Google Scholar 

  26. Minson CT (2010) Thermal provocation to evaluate microvascular reactivity in human skin. J Appl Physiol (1985) 109:1239–1246

    Article  Google Scholar 

  27. Bartz SK, Caldas MC, Tomsa A, Krishnamurthy R, Bacha F (2015) Urine albumin-to-creatinine ratio: a marker of early endothelial dysfunction in youth. J Clin Endocrinol Metab 100:3393–3399

    Article  CAS  PubMed  Google Scholar 

  28. Lin CY, Huang SM (2016) Childhood albuminuria and chronic kidney disease is associated with mortality and end-stage renal disease. Pediatr Neonatol 57:280–287

    Article  PubMed  Google Scholar 

  29. Garg AX, Salvadori M, Okell JM, Thiessen-Philbrook HR, Suri RS, Filler G, Moist L, Matsell D, Clark WF (2008) Albuminuria and estimated GFR 5 years after Escherichia coli O157 hemolytic uremic syndrome: an update. Am J Kidney Dis 51:435–444

    Article  PubMed  Google Scholar 

  30. Fitzpatrick MM, Shah V, Trompeter RS, Dillon MJ, Barratt TM (1991) Long term renal outcome of childhood haemolytic uraemic syndrome. BMJ 303:489–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bar J, Kaplan B, Wittenberg C, Erman A, Boner G, Ben-Rafael Z, Hod M (1999) Microalbuminuria after pregnancy complicated by pre-eclampsia. Nephrol Dial Transplant 14:1129–1132

    Article  CAS  PubMed  Google Scholar 

  32. Shahbazian N, Shahbazian H, Ehsanpour A, Aref A, Gharibzadeh S (2011) Hypertension and microalbuminuria 5 years after pregnancies complicated by pre-eclampsia. Iran J Kidney Dis 5:324–327

    PubMed  Google Scholar 

  33. Kim KT, Choi HH, Steinmetz MO, Maco B, Kammerer RA, Ahn SY, Kim HZ, Lee GM, Koh GY (2005) Oligomerization and multimerization are critical for angiopoietin-1 to bind and phosphorylate Tie2. J Biol Chem 280:20126–20131

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Kreuzer.

Ethics declarations

The study was approved by the local ethics committee and conducted in accordance with the Helsinki Declaration. Patients and/or their parents gave written and informed consent for participating in the study.

Conflict of interest

The authors declare no conflict of interest.

Funding

This study was supported by the Jackstädt-Foundation, Wuppertal, Germany.

Additional information

Martin Kreuzer and Laura Sollmann contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table S1

(DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kreuzer, M., Sollmann, L., Ruben, S. et al. Endothelial dysfunction during long-term follow-up in children with STEC hemolytic-uremic syndrome. Pediatr Nephrol 32, 1005–1011 (2017). https://doi.org/10.1007/s00467-016-3574-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-016-3574-3

Keywords

Navigation