Pediatric Nephrology

, Volume 32, Issue 8, pp 1323–1330 | Cite as

Anemia in nephrotic syndrome: approach to evaluation and treatment

  • Franca Iorember
  • Diego AvilesEmail author
Educational Review


Nephrotic syndrome is one of the most common glomerular diseases that affect in children. Complications may occur in nephrotic syndrome as a result of the disease itself as well as its treatment. Most of these complications result from excessive urinary protein losses, and control of proteinuria is the most effective treatment strategy. Anemia is one of the many complications seen in patients with persistent nephrotic syndrome and may occur as a result of excessive urinary losses of iron, transferrin, erythropoietin, transcobalamin and/or metals. This leads to a deficiency of substrates necessary for effective erythropoiesis, requiring supplementation in order to correct the anemia. Supplementation of iron and erythropoietin alone often does not lead to correction of the anemia, suggesting other possible mechanisms which need further investigation. A clear understanding of the pathophysiologic mechanisms of anemia in nephrotic syndrome is necessary to guide appropriate therapy, but only limited evidence is currently available on the precise etiologic mechanisms of anemia in nephrotic syndrome. In this review we focus on the current state of knowledge on the pathogenesis of anemia in nephrotic syndrome.


Anemia in nephrotic syndrome Erythropoiesis Erythropoietin deficiency Iron hemostasis Proteinuria 


Answers to multiple-choice questions

1: c. Recycled iron from senescent erythrocytes is the major source of iron used for erythropoiesis with little contribution from intestinal absorption or any other sources.

2: d. Hepcidin regulates systemic iron homeostasis by causing the internalization and degradation of ferroportin, resulting in decreased iron absorption in the small intestine, recycling of iron from aged erythrocytes and iron mobilization from storage sites.

3: a. Anemia in nephrotic syndrome can result from excessive urinary losses of iron bound to transferrin and erythropoietin. This is most likely to occur in patients with persistent or treatment-resistant nephrotic syndrome. Other mechanisms may also be responsible.

4: e. Copper deficiency leads to the appearance of enlarged mitochondria in erythropoietic cells which can lead to ineffective erythropoiesis. Copper gluconate supplementation is effective in treating copper deficiency. The use of ACEIs has been associated with anemia in renal transplant patients. ACEIs may cause anemia by lowering circulating levels of erythropoietin and inhibiting erythropoiesis in the process.

5: e. The pathophysiologic mechanisms of anemia in nephrotic syndrome are complex and incompletely understood. Anemia is more likely to occur in patients with therapy-resistant, long-standing nephrotic syndrome and in the context of normal kidney function. Supplementation of iron and erythropoietin does not always lead to resolution of the anemia. Erythropoietin supplementation should be considered even in patients with normal plasma erythropoietin levels.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Kaysen GA (1993) Plasma composition in the nephrotic syndrome. Am J Nephrol 13(5):347–359CrossRefPubMedGoogle Scholar
  2. 2.
    Park SJ, Shin JI (2011) Complications of nephrotic syndrome. Kor J Pediatr 54(8):322–328CrossRefGoogle Scholar
  3. 3.
    Feinstein S, Becker-Cohen R, Algur N, Raveh D, Shalev H, Shvil Y, Frishberg Y (2001) Erythropoietin deficiency causes anemia in nephrotic children with normal kidney function. Am J Kidney Dis 37(4):736–742CrossRefPubMedGoogle Scholar
  4. 4.
    Cavill I (2002) Iron and erythropoietin in renal disease. Nephrol Dial Transplant 17[Suppl 5]:19–23CrossRefPubMedGoogle Scholar
  5. 5.
    Panwar B, Gutiérrez OM (2016) Disorders of iron metabolism and anemia in chronic kidney disease. Semin Nephrol 36(4):252–261CrossRefPubMedGoogle Scholar
  6. 6.
    Shibasaki T, Misawa T, Matsumoto H, Abe S, Nakano H, Matsuda H, Gomi H, Ohno I, Ishimoto F, Sakai O (1994) Characteristics of anemia in patients with nephrotic syndrome. Nihon Jinzo Gakkai Shi 36(8):896–901PubMedGoogle Scholar
  7. 7.
    Ganz T (2013) Systemic iron homeostasis. Physiol Rev 93(4):1721–1741CrossRefPubMedGoogle Scholar
  8. 8.
    Knutson M, Wessling-Resnick M (2003) Iron metabolism in the reticuloendothelial system. Crit Rev Biochem Mol Biol 38(1):61–88CrossRefPubMedGoogle Scholar
  9. 9.
    Ganz T, Nemeth E (2012) Hepcidin and iron homeostasis. Biochim Biophys Acta 1823(9):1434–1443CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Cui Y, Wu Q, Zhou Y (2009) Iron-refractory iron deficiency anemia: new molecular mechanisms. Kidney Int 76(11):1137–1141CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lin L, Valore EV, Nemeth E, Goodnough JB, Gabayan V, Ganz T (2007) Iron transferrin regulates hepcidin synthesis in primary hepatocyte culture through hemojuvelin and BMP2/4. Blood 110(6):2182–2189CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Fried W (2009) Erythropoietin and erythropoiesis. Exp Hematol 37(9):1007–1015CrossRefPubMedGoogle Scholar
  13. 13.
    Chateauvieux S, Grigorakaki C, Morceau F, Dicato M, Diederich M (2011) Erythropoietin, erythropoiesis and beyond. Biochem Pharmacol 82(10):1291–1303CrossRefPubMedGoogle Scholar
  14. 14.
    Hancock DE, Onstad JW, Wolf PL (1976) Transferrin loss into the urine with hypochromic, microcytic anemia. Am J Clin Pathol 65(1):73–78CrossRefPubMedGoogle Scholar
  15. 15.
    Brown EA, Sampson B, Muller BR, Curtis JR (1984) Urinary iron loss in the nephrotic syndrome—an unusual cause of iron deficiency with a note on urinary copper losses. Postgrad Med J 60(700):125–128CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Howard RL, Buddington B, Alfrey AC (1991) Urinary albumin, transferrin and iron excretion in diabetic patients. Kidney Int 40(5):923–926CrossRefPubMedGoogle Scholar
  17. 17.
    Cooper MA, Buddington B, Miller NL, Alfrey AC (1995) Urinary iron speciation in nephrotic syndrome. Am J Kidney Dis 25(2):314–319CrossRefPubMedGoogle Scholar
  18. 18.
    Eskelinen S, Haikonen M, Raisanen S (1983) Ferene-S as the chromogen for serum iron determinations. Scand J Clin Lab Invest 43(5):453–455CrossRefPubMedGoogle Scholar
  19. 19.
    Warshaw BL, Check IJ, Hymes LC, DiRusso SC (1984) Decreased serum transferrin concentration in children with the nephrotic syndrome: effect on lymphocyte proliferation and correlation with serum immunoglobulin levels. Clin Immunol Immunopathol 33(2):210–219CrossRefPubMedGoogle Scholar
  20. 20.
    Ellis D (1977) Anemia in the course of the nephrotic syndrome secondary to transferrin depletion. J Pediatr 90(6):953–955CrossRefPubMedGoogle Scholar
  21. 21.
    Prinsen BH, de Sain-van der Velden MG, Kaysen GA, Straver HW, van Rijn HJ, Stellaard F, Berger R, Rabelink TJ (2001) Transferrin synthesis is increased in nephrotic patients insufficiently to replace urinary losses. J Am Soc Nephrol 12(5):1017–1025PubMedGoogle Scholar
  22. 22.
    Toubiana J, Schlageter M-H, Aoun B, Dunand O, Vitkevic R, Bensman A, Ulinski T (2009) Therapy-resistant anaemia in congenital nephrotic syndrome of the Finnish type—implication of EPO, transferrin and transcobalamin losses. Nephrol Dial Transplant 24(4):1338–1340CrossRefPubMedGoogle Scholar
  23. 23.
    Skikne BS (2008) Serum transferrin receptor. Am J Hematol 83(11):872–875CrossRefPubMedGoogle Scholar
  24. 24.
    Kemper MJ, Bello AB, Altrogge H, Timmermann K, Ludwig K, Müller-Wiefel DE (1999) Iron homeostasis in relapsing steroid-sensitive nephrotic syndrome of childhood. Clin Nephrol 52(1):25–29PubMedGoogle Scholar
  25. 25.
    Yoon SH, Kim DS, Yu ST, Shin SR, du Choi Y (2015) The usefulness of soluble transferrin receptor in the diagnosis and treatment of iron deficiency anemia in children. Kor J Pediatr 58(1):15–19CrossRefGoogle Scholar
  26. 26.
    Zhou XJ, Vaziri ND (1992) Erythropoietin metabolism and pharmacokinetics in experimental nephrosis. Am J Physiol 263(5 Pt 2):F812–F815PubMedGoogle Scholar
  27. 27.
    Yamaguchi-Yamada M, Manabe N, Uchio-Yamada K, Akashi N, Goto Y, Miyamoto Y, Nagao M, Yamamoto Y, Ogura A, Miyamoto H (2004) Anemia with chronic renal disorder and disrupted metabolism of erythropoietin in ICR-derived glomerulonephritis (ICGN) mice. J Vet Med Sci 66(4):423–431CrossRefPubMedGoogle Scholar
  28. 28.
    Inoue A, Babazono T, Suzuki K, Iwamoto Y (2007) Albuminuria is an independent predictor of decreased serum erythropoietin levels in type 2 diabetic patients. Nephrol Dial Transplant 22(1):287–288CrossRefPubMedGoogle Scholar
  29. 29.
    Jelkmann W (2004) Molecular biology of erythropoietin. Intern Med 43(8):649–659CrossRefPubMedGoogle Scholar
  30. 30.
    Fong T, Vij R, Vijayan A, DiPersio J, Blinder M (2007) Copper deficiency: an important consideration in the differential diagnosis of myelodysplastic syndrome. Haematologica 92(10):1429–1430CrossRefPubMedGoogle Scholar
  31. 31.
    Ulinski T, Aoun B, Toubiana J, Vitkevic R, Bensman A, Donadieu J (2009) Neutropenia in congenital nephrotic syndrome of the Finnish type: role of urinary ceruloplasmin loss. Blood 113(19):4820–4821CrossRefPubMedGoogle Scholar
  32. 32.
    Kim B-E, Nevitt T, Thiele DJ (2008) Mechanisms for copper acquisition, distribution and regulation. Nat Chem Biol 4(3):176–185CrossRefPubMedGoogle Scholar
  33. 33.
    Bustos RI, Jensen EL, Ruiz LM, Rivera S, Ruiz S, Simon F, Riedel C, Ferrick D, Elorza AA (2013) Copper deficiency alters cell bioenergetics and induces mitochondrial fusion through up-regulation of MFN2 and OPA1 in erythropoietic cells. Biochem Biophys Res Commun 437(3):426–432CrossRefPubMedGoogle Scholar
  34. 34.
    Cherukuri S, Tripoulas NA, Nurko S (2004) Anemia and impaired stress-induced erythropoiesis in aceruloplasminemic mice. Blood Cells Mol Dis 33(3):346–355CrossRefPubMedGoogle Scholar
  35. 35.
    Hoffman HN, Phyliky RL, Fleming CR (1988) Zinc-induced copper deficiency. Gastroenterology 94(2):508–512CrossRefPubMedGoogle Scholar
  36. 36.
    Niel O, Thouret M-C, Berard E (2011) Anemia in congenital nephrotic syndrome: role of urinary copper and ceruloplasmin loss. Blood 117(22):6054–6055CrossRefPubMedGoogle Scholar
  37. 37.
    Satoh S, Kaneko T, Seino K, Abe T, Omori S, Sugimura J, Fujioka T, Kubo T (1995) Angiotensin-converting enzyme inhibitor-induced anemia and treatment for erythrocytosis in renal transplant recipients. Nihon Jinzo Gakkai Shi 37(6):343–347PubMedGoogle Scholar
  38. 38.
    Sizeland PC, Bailey RR, Lynn KL, Robson RA (1990) Anemia and angiotensin-converting enzyme inhibition in renal transplant recipients. J Cardiovasc Pharmacol 16[Suppl 7]:S117–S119CrossRefPubMedGoogle Scholar
  39. 39.
    Cheungpasitporn W, Thongprayoon C, Chiasakul T, Korpaisarn S, Erickson SB (2015) Renin-angiotensin system inhibitors linked to anemia: a systematic review and meta-analysis. QJM 108(11):879–884CrossRefPubMedGoogle Scholar
  40. 40.
    Engelen W, Verpooten GA, van der Planken M, Helbert MF, Bosmans JL, De Broe ME (2003) Four cases of red blood cell aplasia in association with the use of mycophenolate mofetil in renal transplant patients. Clin Nephrol 60(2):119–124CrossRefPubMedGoogle Scholar
  41. 41.
    Wuerges J, Geremia S, Fedosov SN, Randaccio L (2007) Vitamin B12 transport proteins: crystallographic analysis of beta-axial ligand substitutions in cobalamin bound to transcobalamin. IUBMB Life 59(11):722–729CrossRefPubMedGoogle Scholar
  42. 42.
    Aminoff M, Carter JE, Chadwick RB, Johnson C, Gräsbeck R, Abdelaal MA, Broch H, Jenner LB, Verroust PJ, Moestrup SK, de la Chapelle A, Krahe R l (1999) Mutations in CUBN, encoding the intrinsic factor-vitamin B12 receptor, cubilin, cause hereditary megaloblastic anaemia 1. Nat Genet 21(3):309–313CrossRefPubMedGoogle Scholar
  43. 43.
    Amsellem S, Gburek J, Hamard G, Nielsen R, Willnow TE, Devuyst O, Nexo E, Verroust PJ, Christensen EI, Kozyraki R (2010) Cubilin is essential for albumin reabsorption in the renal proximal tubule. J Am Soc Nephrol 21(11):1859–1867CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Koury MJ, Ponka P (2004) New insights into erythropoiesis: the roles of folate, vitamin B12, and iron. Annu Rev Nutr 24:105–131CrossRefPubMedGoogle Scholar
  45. 45.
    Kundal M, Saha A, Dubey NK, Kapoor K, Basak T, Bhardwaj G, Tanwar VS, Sengupta S, Batra V, Upadhayay AD, Bhatt A (2014) Homocysteine metabolism in children with idiopathic nephrotic syndrome. Clin Transl Sci 7(2):132–136CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Green R, Dwyre DM (2015) Evaluation of macrocytic anemias. Semin Hematol 52(4):279–286CrossRefPubMedGoogle Scholar
  47. 47.
    Hvas A-M, Nexo E (2006) Diagnosis and treatment of vitamin B12 deficiency—an update. Haematologica 91(11):1506–1512PubMedGoogle Scholar
  48. 48.
    Bhardwaj A, Kumar D, Raina SK, Bansal P, Bhushan S, Chander V (2013) Rapid assessment for coexistence of vitamin B12 and iron deficiency anemia among adolescent males and females in northern Himalayan state of India. Anemia 2013:959605CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Artunc F, Risler T (2007) Serum erythropoietin concentrations and responses to anaemia in patients with or without chronic kidney disease. Nephrol Dial Transplant 22(10):2900–2908CrossRefPubMedGoogle Scholar
  50. 50.
    Okam MM, Koch TA, Tran M-H (2016) Iron deficiency anemia treatment response to oral iron therapy: a pooled analysis of five randomized controlled trials. Haematologica 101(1):e6–e7CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Tamura H, Hirose S, Watanabe O, Arai K, Murakawa M, Matsumura O, Isoda K (1994) Anemia and neutropenia due to copper deficiency in enteral nutrition. J Parenter Enter Nutr 18(2):185–189CrossRefGoogle Scholar
  52. 52.
    Hunt A, Harrington D, Robinson S (2014) Vitamin B12 deficiency. BMJ 349:g5226CrossRefPubMedGoogle Scholar

Copyright information

© IPNA 2016

Authors and Affiliations

  1. 1.Division of Pediatric Nephrology, Department of PediatricsLouisiana State University Health Sciences CenterNow OrleansUSA

Personalised recommendations