Pediatric Nephrology

, Volume 32, Issue 1, pp 151–161 | Cite as

Preterm neonatal urinary renal developmental and acute kidney injury metabolomic profiling: an exploratory study

  • Kelly Mercier
  • Susan McRitchie
  • Wimal Pathmasiri
  • Andrew Novokhatny
  • Rajesh Koralkar
  • David Askenazi
  • Patrick D. Brophy
  • Susan Sumner
Original Article

Abstract

Background

Acute kidney injury (AKI) staging has been developed in the adult and pediatric populations, but these do not yet exist for the neonatal population. Metabolomics was utilized to uncover biomarkers of normal and AKI-associated renal function in preterm infants. The study comprised 20 preterm infants with an AKI diagnosis who were matched by gestational age and gender to 20 infants without an AKI diagnosis.

Methods

Urine samples from pre-term newborn infants collected on day 2 of life were analyzed using broad-spectrum nuclear magnetic resonance (NMR) metabolomics. Multivariate analysis methods were used to identify metabolite profiles that differentiated AKI and no AKI, and to identify a metabolomics profile correlating with gestational age in infants with and without AKI.

Results

There was a clear distinction between the AKI and no-AKI profiles. Two previously identified biomarkers of AKI, hippurate and homovanillate, differentiated AKI from no-AKI profiles. Pathway analysis revealed similarities to cholinergic neurons, prenatal nicotine exposure on pancreatic β cells, and amitraz-induced inhibition of insulin secretion. Additionally, a pH difference was noted. Both pH and the metabolites were found to be associated with AKI; however, only the metabotype was a significant predictor of AKI. Pathways for the no-AKI group that correlated uniquely with gestational age included aminoacyl-t-RNA biosynthesis, whereas pathways in the AKI group yielded potential metabolite changes in pyruvate metabolism.

Conclusions

Metabolomics was able to differentiate the urinary profiles of neonates with and without an AKI diagnosis and metabolic developmental profiles correlated with gestational age. Further studies in larger cohorts are needed to validate these results.

Keywords

Neonatal Acute kidney injury Renal development Metabolomics NMR spectroscopy Multivariate analysis Regression analysis 

References

  1. 1.
    Askenazi DJ, Feig DI, Graham NM, Hui-Stickle S, Goldstein SL (2006) 3–5 year longitudinal follow- up of pediatric patients after acute renal failure. Kidney Int 69:184–189CrossRefPubMedGoogle Scholar
  2. 2.
    Viswanathan S, Manyam B, Azhibekov T, Mhanna MJ (2012) Risk factors associated with acute kidney injury in extremely low birth weight (ELBW) infants. Pediatr Nephrol 27:303–311CrossRefPubMedGoogle Scholar
  3. 3.
    Carmody JB, Swanson JR, Rhone ET, Charlton JR (2014) Recognition and reporting of AKI in very low birth weight infants. Clin J Am Soc Nephrol 9:2036–2043CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Koralkar R, Ambalavanan N, Levitan EB, McGwin G, Goldstein S, Askenazi D (2011) Acute kidney injury reduces survival in very low birth weight infants. Pediatr Res 69:354–358CrossRefPubMedGoogle Scholar
  5. 5.
    Askenazi DJ, Montesanti A, Hunley H, Koralkar R, Pawar P, Shuaib F, Liwo A, Devarajan P, Ambalavanan N (2011) Urine biomarkers predict acute kidney injury and mortality in very low birth weight infants. J Pediatr 159:907–912.e1CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Dettmer K, Hammock BD (2004) Metabolomics--a new exciting field within the “omics” sciences. Environ Health Perspect 112:A396–397PubMedPubMedCentralGoogle Scholar
  7. 7.
    Boccard J, Veuthey JL, Rudaz S (2010) Knowledge discovery in metabolomics: an overview of MS data handling. J Sep Sci 33:290–304CrossRefPubMedGoogle Scholar
  8. 8.
    Boudonck KJ, Mitchell MW, Nemet L, Keresztes L, Nyska A, Shinar D, Rosenstock M (2009) Discovery of metabolomics biomarkers for early detection of nephrotoxicity. Toxicol Pathol 37:280–292CrossRefPubMedGoogle Scholar
  9. 9.
    Hanna MH, Brophy PD (2015) Metabolomics in pediatric nephrology: emerging concepts. Pediatr Nephrol 30:881–887CrossRefPubMedGoogle Scholar
  10. 10.
    Atzori L, Antonucci R, Barberini L, Locci E, Marincola FC, Scano P, Cortesi P, Agostiniani R, Defraia R, Weljie A, Gazzolo D, Lai A, Fanos V (2011) 1H NMR-based metabolomic analysis of urine from preterm and term neonates. Front Biosci (Elite Ed) 3:1005–1012CrossRefGoogle Scholar
  11. 11.
    Morrow AL, Lagomarcino AJ, Schibler KR, Taft DH, Yu Z, Wang B, Altaye M, Wagner M, Gevers D, Ward DV, Kennedy MA, Huttenhower C, Newburg DS (2013) Early microbial and metabolomic signatures predict later onset of necrotizing enterocolitis in preterm infants. Microbiome 1:13CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Barberini L, Noto A, Fattuoni C, Grapov D, Casanova A, Fenu G, Gaviano M, Carboni R, Ottonello G, Crisafulli M, Fanos V, Dessi A (2014) Urinary metabolomics (GC-MS) reveals that low and high birth weight infants share elevated inositol concentrations at birth. J Matern Fetal Neonatal Med 27 [Suppl 2]:20–26CrossRefPubMedGoogle Scholar
  13. 13.
    Dessi A, Marincola FC, Pattumelli MG, Ciccarelli S, Corbu S, Ossicini C, Fanos V, Agostino R (2014) Investigation of the (1)H-NMR based urine metabolomic profiles of IUGR, LGA and AGA newborns on the first day of life. J Matern Fetal Neonatal Med 27 [Suppl 2]:13–19CrossRefPubMedGoogle Scholar
  14. 14.
    Saude EJ, Sykes BD (2007) Urine stability for metabolomic studies: effects of preparation and storage. Metabolomics 3:19–27CrossRefGoogle Scholar
  15. 15.
    Roux A, Thévenot EA, Seguin F, Olivier M-F, Junot C (2015) Impact of collection conditions on the metabolite content of human urine samples as analyzed by liquid chromatography coupled to mass spectrometry and nuclear magnetic resonance spectroscopy. Metabolomics 11:1095–1105CrossRefPubMedGoogle Scholar
  16. 16.
    Sumner SC, Snyder RW, Wingard C, Mortensen NP, Holland NA, Shannahan JH, Dhungana S, Pathmasiri W, Han L, Lewin AH, Fennell TR (2015) Distribution and biomarkers of carbon-14-labeled fullerene C60 ([(14) C(U)]C60 ) in female rats and mice for up to 30 days after intravenous exposure. J Appl Toxicol 35:1452–1464CrossRefPubMedGoogle Scholar
  17. 17.
    Pathmasiri W, Pratt KJ, Collier DN, Lutes LD, McRitchie S, Sumner SCJ (2012) Integrating metabolomic signatures and psychosocial parameters in responsivity to an immersion treatment model for adolescent obesity. Metabolomics 8:1037–1051CrossRefGoogle Scholar
  18. 18.
    Sumner S, Snyder R, Burgess J, Myers C, Tyl R, Sloan C, Fennell T (2009) Metabolomics in the assessment of chemical-induced reproductive and developmental outcomes using non-invasive biological fluids: application to the study of butylbenzyl phthalate. J Appl Toxicol 29:703–714CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Church RJ, Wu H, Mosedale M, Sumner SJ, Pathmasiri W, Kurtz CL, Pletcher MT, Eaddy JS, Pandher K, Singer M, Batheja A, Watkins PB, Adkins K, Harrill AH (2014) A systems biology approach utilizing a mouse diversity panel identifies genetic differences influencing isoniazid- induced microvesicular steatosis. Toxicol Sci 140:481–492CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Banerjee R, Pathmasiri W, Snyder R, McRitchie S, Sumner S (2012) Metabolomics of brain and reproductive organs: characterizing the impact of gestational exposure to butylbenzyl phthalate on dams and resultant offspring. Metabolomics 8:1012–1025CrossRefGoogle Scholar
  21. 21.
    Snyder RW, Fennell TR, Wingard CJ, Mortensen NP, Holland NA, Shannahan JH, Pathmasiri W, Lewin AH, Sumner SC (2015) Distribution and biomarker of carbon-14 labeled fullerene C ([ C(U)]C ) in pregnant and lactating rats and their offspring after maternal intravenous exposure. J Appl Toxicol 35:1438–1451CrossRefPubMedGoogle Scholar
  22. 22.
    Bylesjö M, Rantalainen M, Cloarec O, Nicholson JK, Holmes E, Trygg J (2006) OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification. J Proteome Res 20:341–351Google Scholar
  23. 23.
    Eriksson L, Byrne T, Johansson E, Trygg J, Vikström C (2013) Multi-and megavariate data analysis basic principles and applications. Umetrics Academy, SwedenGoogle Scholar
  24. 24.
    Chan EC, Pasikanti KK, Nicholson JK (2011) Global urinary metabolic profiling procedures using gas chromatography–mass spectrometry. Nat Protoc 6:1483–1499CrossRefPubMedGoogle Scholar
  25. 25.
    Wishart DS, Tzur D, Knox C, Eisner R, Guo AC, Young N, Cheng D, Jewell K, Arndt D, Sawhney S, Fung C, Nikolai L, Lewis M, Coutouly MA, Forsythe I, Tang P, Shrivastava S, Jeroncic K, Stothard P, Amegbey G, Block D, Hau DD, Wagner J, Miniaci J, Clements M, Gebremedhin M, Guo N, Zhang Y, Duggan GE, Macinnis GD, Weljie AM, Dowlatabadi R, Bamforth F, Clive D, Greiner R, Li L, Marrie T, Sykes BD, Vogel HJ, Querengesser L (2007) HMDB: the Human Metabolome Database. Nucleic Acids Res 35:D521–D526CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Wishart DS, Knox C, Guo AC, Eisner R, Young N, Gautam B, Hau DD, Psychogios N, Dong E, Bouatra S, Mandal R, Sinelnikov I, Xia J, Jia L, Cruz JA, Lim E, Sobsey CA, Shrivastava S, Huang P, Liu P, Fang L, Peng J, Fradette R, Cheng D, Tzur D, Clements M, Lewis A, De Souza A, Zuniga A, Dawe M, Xiong Y, Clive D, Greiner R, Nazyrova A, Shaykhutdinov R, Li L, Vogel HJ, Forsythe I (2009) HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res 37:D603–D610CrossRefPubMedGoogle Scholar
  27. 27.
    Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, Djoumbou Y, Mandal R, Aziat F, Dong E, Bouatra S, Sinelnikov I, Arndt D, Xia J, Liu P, Yallou F, Bjorndahl T, Perez-Pineiro R, Eisner R, Allen F, Neveu V, Greiner R, Scalbert A (2013) HMDB 3.0—The Human Metabolome Database in 2013. Nucleic Acids Res 41:D801–D807CrossRefPubMedGoogle Scholar
  28. 28.
    Hagan WJ, Edie DL, Cooley LB (2007) Imidazole as a pH probe: an NMR experiment for the general chemistry laboratory. J Chem Educ 84:1188CrossRefGoogle Scholar
  29. 29.
    Bender R, Lange S (2001) Adjusting for multiple testing—when and how? J Clin Epidemiol 54:343–349CrossRefPubMedGoogle Scholar
  30. 30.
    Xi B, Gu H, Baniasadi H, Raftery D (2014) Statistical analysis and modeling of mass spectrometry-based metabolomics data. Methods Mol Biol 1198:333–353CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Beger RD, Holland RD, Sun J, Schnackenberg LK, Moore PC, Dent CL, Devarajan P, Portilla D (2008) Metabonomics of acute kidney injury in children after cardiac surgery. Pediatr Nephrol 23:977–984CrossRefPubMedGoogle Scholar
  32. 32.
    Kim KB, Um SY, Chung MW, Jung SC, Oh JS, Kim SH, Na HS, Lee BM, Choi KH (2010) Toxicometabolomics approach to urinary biomarkers for mercuric chloride (HgCl(2))-induced nephrotoxicity using proton nuclear magnetic resonance ((1)H NMR) in rats. Toxicol Appl Pharmacol 249:114–126CrossRefPubMedGoogle Scholar
  33. 33.
    Tzovaras V, Tsimihodimos V, Kostara C, Mitrogianni Z, Elisaf M (2011) Aminoglycoside-induced nephrotoxicity studied by proton magnetic resonance spectroscopy of urine. Nephrol Dial Transplant 26:3219–3224CrossRefPubMedGoogle Scholar
  34. 34.
    Magalhaes PA, de Brito TS, Freire RS, da Silva MT, Dos Santos AA, Vale ML, de Menezes DB, Martins AM, Liborio AB (2016) Metabolic acidosis aggravates experimental acute kidney injury. Life Sci 146:58–65CrossRefPubMedGoogle Scholar
  35. 35.
    Qian J, You H, Zhu Q, Ma S, Zhou Y, Zheng Y, Liu J, Kuang D, Gu Y, Hao C, Ding F (2013) Nitrotyrosine level was associated with mortality in patients with acute kidney injury. PLoS One 8:e79962CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Wei Q, Xiao X, Fogle P, Dong Z (2014) Changes in metabolic profiles during acute kidney injury and recovery following ischemia/reperfusion. PLoS One 9:e106647CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Jun JG, Maeda S, Kuwahara-Otani S, Tanaka K, Hayakawa T, Seki M (2014) Expression of adrenergic and cholinergic receptors in murine renal intercalated cells. J Vet Med Sci 76:1493–1500CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Oglesby PA, Joubert KE, Meiring T (2006) Canine renal cortical necrosis and haemorrhage following ingestion of an Amitraz-formulated insecticide dip. J S Afr Vet Assoc 77:160–163CrossRefPubMedGoogle Scholar
  39. 39.
    Ozbek E (2012) Induction of oxidative stress in kidney. Int J Nephrol 2012:465897. doi:10.1155/2012/465897 PubMedPubMedCentralGoogle Scholar
  40. 40.
    Pflueger A, Abramowitz D, Calvin AD (2009) Role of oxidative stress in contrast-induced acute kidney injury in diabetes mellitus. Med Sci Monit 15:RA125–RA136PubMedGoogle Scholar
  41. 41.
    Carone FA, Peterson DR, Oparil S, Pullman TN (1979) Renal tubular transport and catabolism of proteins and peptides. Kidney Int 16:271–278CrossRefPubMedGoogle Scholar
  42. 42.
    Aperia A, Broberger O, Elinder G, Herin P, Zetterstrom R (1981) Postnatal development of renal function in pre-term and full-term infants. Acta Paediatr Scand 70:183–187CrossRefPubMedGoogle Scholar
  43. 43.
    National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network (2012) Initial trophic vs full enteral feeding in patients with acute lung injury: the EDEN randomized trial. JAMA 307:795–803CrossRefGoogle Scholar
  44. 44.
    Eggert LD, Rusho WJ, MacKay MW, Chan GM (1982) Calcium and phosphorus compatibility in parental nutrition solutions for neonates. Am J Hosp Pharm 39:49–53PubMedGoogle Scholar
  45. 45.
    Perroud B, Lee J, Valkova N, Dhirapong A, Lin P-Y, Fiehn O, Kültz D, Weiss RH (2006) Pathway analysis of kidney cancer using proteomics and metabolic profiling. Mol Cancer 5:64CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Sakurada K (2010) Environmental epigenetic modifications and reprogramming-recalcitrant genes. Stem Cell Res 4:157–164CrossRefPubMedGoogle Scholar
  47. 47.
    Puddu M, Fanos V, Podda F, Zaffanello M (2009) The kidney from prenatal to adult life: perinatal programming and reduction of number of nephrons during development. Am J Nephrol 30:162–170CrossRefPubMedGoogle Scholar
  48. 48.
    Allegaert K (2012) Propylene glycol in neonates: never prescribed, frequently administered, hardly evaluated. J Clin Toxicol 2:e113CrossRefGoogle Scholar
  49. 49.
    Shehab N, Lewis CL, Streetman DD, Donn SM (2009) Exposure to the pharmaceutical excipients benzyl alcohol and propylene glycol among critically ill neonates. Pediatr Crit Care Med 10:256–259CrossRefPubMedGoogle Scholar
  50. 50.
    De Cock RF, Allegaert K, Vanhaesebrouck S, de Hoon J, Verbesselt R, Danhof M, Knibbe CA (2014) Low but inducible contribution of renal elimination to clearance of propylene glycol in preterm and term neonates. Ther Drug Monit 36:278–287CrossRefPubMedGoogle Scholar
  51. 51.
    Moltu SJ, Sachse D, Blakstad EW, Strommen K, Nakstad B, Almaas AN, Westerberg AC, Ronnestad A, Braekke K, Veierod MB, Iversen PO, Rise F, Berg JP, Drevon CA (2014) Urinary metabolite profiles in premature infants show early postnatal metabolic adaptation and maturation. Nutrients 6:1913–1930CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Dessi A, Atzori L, Noto A, Visser GH, Gazzolo D, Zanardo V, Barberini L, Puddu M, Ottonello G, Atzei A, De Magistris A, Lussu M, Murgia F, Fanos V (2011) Metabolomics in newborns with intrauterine growth retardation (IUGR): urine reveals markers of metabolic syndrome. J Matern Fetal Neonatal Med 24 [Suppl 2]:35–39CrossRefPubMedGoogle Scholar
  53. 53.
    McDonald TJ, Wu G, Nijland MJ, Jenkins SL, Nathanielsz PW, Jansson T (2013) Effect of 30% nutrient restriction in the first half of gestation on maternal and fetal baboon serum amino acid concentrations. Br J Nutr 109:1382–1388CrossRefPubMedGoogle Scholar
  54. 54.
    Malis CD, Bonventre JV (1986) Mechanism of calcium potentiation of oxygen free radical injury to renal mitochondria. A model for post-ischemic and toxic mitochondrial damage. J Biol Chem 261:14201–14208PubMedGoogle Scholar
  55. 55.
    Feldkamp T, Park JS, Pasupulati R, Amora D, Roeser NF, Venkatachalam MA, Weinberg JM (2009) Regulation of the mitochondrial permeability transition in kidney proximal tubules and its alteration during hypoxia-reoxygenation. Am J Physiol Renal Physiol 297:F1632–F1646CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© IPNA 2016

Authors and Affiliations

  • Kelly Mercier
    • 1
  • Susan McRitchie
    • 1
  • Wimal Pathmasiri
    • 1
  • Andrew Novokhatny
    • 1
  • Rajesh Koralkar
    • 2
  • David Askenazi
    • 2
  • Patrick D. Brophy
    • 3
  • Susan Sumner
    • 1
  1. 1.RTI InternationalTriangleUSA
  2. 2.University of Alabama Children’s HospitalBirminghamUSA
  3. 3.University of Iowa Children’s HospitalIowa CityUSA

Personalised recommendations