Skip to main content

Advertisement

Log in

Prorenin receptor in kidney development

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Prorenin receptor (PRR), a receptor for renin and prorenin and an accessory subunit of the vacuolar proton pump H+-ATPase, is expressed in the developing kidney. Global loss of PRR is lethal in mice, and PRR mutations are associated with a high blood pressure, left ventricular hypertrophy and X-linked mental retardation in humans. With the advent of modern gene targeting techniques, including conditional knockout approaches, several recent studies have demonstrated critical roles for the PRR in several lineages of the developing kidney. PRR signaling has been shown to be essential for branching morphogenesis of the ureteric bud (UB), nephron progenitor survival and nephrogenesis. PRR regulates these developmental events through interactions with other transcription and growth factors. Several targeted PRR knockout animal models have structural defects mimicking congenital anomalies of the kidney and urinary tract observed in humans. The aim of this review, is to highlight new insights into the cellular and molecular mechanisms by which PRR may regulate UB branching, terminal differentiation and function of UB-derived collecting ducts, nephron progenitor maintenance, progression of nephrogenesis and normal structural kidney development and function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nguyen G, Delarue F, Burcklé C, Bouzhir L, Giller T, Sraer JD (2002) Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin. J Clin Invest 109:1417–1427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bader M (2007) Spotlight on renin. The second life of the (pro)renin receptor. J Renin Angiotensin Aldosterone Syst. 8:205–208

  3. Cousin C, Bracquart D, Contrepas A, Corvol P, Muller L, Nguyen G (2009) Soluble form of the (pro)renin receptor generated by intracellular cleavage by furin is secreted in plasma. Hypertension 53:1077–1082

    Article  CAS  PubMed  Google Scholar 

  4. Yoshikawa A, Aizaki Y, Kusano K, Kishi F, Susumu T, Iida S, Ishiura S, Nishimura S, Shichiri M, Senbonmatsu T (2011) The (pro)renin receptor is cleaved by ADAM19 in the Golgi leading to its secretion into extracellular space. Hypertens Res 34:599–605

    Article  CAS  PubMed  Google Scholar 

  5. Kelly RB (1985) Pathways of protein secretion in eukaryotes. Science 230:25–32

    Article  CAS  PubMed  Google Scholar 

  6. Ludwig J, Kerscher S, Brandt U, Pfeiffer K, Getlawi F, Apps DK, Schägger H (1998) Identification and characterization of a novel 9.2-kDa membrane sector-associated protein of vacuolar proton-ATPase from chromaffin granules. J Biol Chem 273:10939–10947

    Article  CAS  PubMed  Google Scholar 

  7. Huang Y, Noble NA, Zhang J, Xu C, Border WA (2007) Renin-stimulated TGF-beta1 expression is regulated by a mitogen-activated protein kinase in mesangial cells. Kidney Int 72:45–52

    Article  CAS  PubMed  Google Scholar 

  8. Sakoda M, Ichihara A, Kaneshiro Y, Takemitsu T, Nakazato Y, Nabi AH, Nakagawa T, Suzuki F, Inagami T, Itoh H (2007) (Pro)renin receptor-mediated activation of mitogen-activated protein kinases in human vascular smooth muscle cells. Hypertens Res 30:1139–1146

    Article  CAS  PubMed  Google Scholar 

  9. Song R, Preston G, Yosypiv IV (2013) Ontogeny of the prorenin receptor. Pediatr Res 74:5–10

    Article  CAS  PubMed  Google Scholar 

  10. Song R, Preston G, Ichihara A (2013) Yosypiv IV (2013) Deletion of the prorenin receptor from the ureteric bud causes renal hypodysplasia. PLoS ONE 8: e63835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Song R, Preston G, Kidd L, Bushnell D, Sims-Lucas S, Bates CM, Yosypiv IV (2016) Prorenin receptor is critical for nephron progenitors. Dev Biol 409:382–391

    Article  CAS  PubMed  Google Scholar 

  12. Advani A, Kelly DJ, Cox AJ, White KE, Advani SL, Thai K, Connelly KA, Yuen D, Trogadis J, Herzenberg AM, Kuliszewski MA, Leong-Poi H, Gilbert RE (2009) The (Pro)renin receptor: site-specific and functional linkage to the vacuolar H +−ATPase in the kidney. Hypertension 54:261–269

    Article  CAS  PubMed  Google Scholar 

  13. Ichihara A, Kaneshiro Y, Takemitsu T, Sakoda M, Itoh H (2007) The (pro)renin receptor and the kidney. Semin Nephrol 27:524–528

    Article  CAS  PubMed  Google Scholar 

  14. Sakoda M, Ichihara A, Kurauchi-Mito A, Narita T, Kinouchi K, Murohashi-Bokuda K, Saleem MA, Nishiyama A, Suzuki F, Itoh H (2010) Aliskiren inhibits intracellular angiotensin II levels without affecting (pro)renin receptor signals in human podocytes. Am J Hypertens 23:575–580

    Article  CAS  PubMed  Google Scholar 

  15. Wagner CA, Finberg KE, Breton S, Marshansky V, Brown D, Geibel JP (2004) Renal vacuolar H+−ATPase. Physiol Rev 84:1263–314

    Article  CAS  PubMed  Google Scholar 

  16. Schefe JH, Menk M, Reinemund J, Effertz K, Hobbs RM, Pandolfi PP, Ruiz P, Unger T, Funke-Kaiser H (2006) A novel signal transduction cascade involving direct physical interaction of the renin/prorenin receptor with the transcription factor promyelocytic zinc finger protein. Circ Res 99:1355–1366

    Article  CAS  PubMed  Google Scholar 

  17. Sihn G, Burckle C, Rousselle A, Reimer T, Bader M (2013) (Pro)renin receptor: subcellular localizations and functions. Front Biosci 5:500–508

    Article  Google Scholar 

  18. Costantini F, Kopan R (2010) Patterning a complex organ: branching morphogenesis and nephron segmentation in kidney development. Dev Cell 18:698–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Song R, Yosypiv IV (2011) Genetics of congenital anomalies of the kidney and urinary tract. Pediatr Nephrol 26:353–364

    Article  PubMed  Google Scholar 

  20. Kobayashi A, Valerius MT, Mugford JW, Carroll TJ, Self M, Oliver G, McMahon AP (2008) Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development. Cell Stem Cell 3:169–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Combes AN, Davies JA, Little MH (2015) Cell–cell interactions driving kidney morphogenesis. Curr Top Dev Biol 112:467–508

    Article  PubMed  Google Scholar 

  22. Das A, Tanigawa S, Karner CM, Xin M, Lum L, Chen C, Olson EN, Perantoni AO, Carroll TJ (2013) Stromal-epithelial crosstalk regulates kidney progenitor cell differentiation. Nat Cell Biol 15:1035–1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sims-Lucas S, Schaefer C, Bushnell D, Ho J, Logar A, Prochownik E, Gittes G, Bates CM (2013) Endothelial progenitors exist within the kidney and lung mesenchyme. PLoS One 8:e65993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Humphreys BD, Lin SL, Kobayashi A, Hudson TE, Nowlin BT, Bonventre JV, Valerius MT, McMahon AP, Duffield JS (2010) Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol 176:85–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sequeira Lopez ML, Gomez RA (2011) Development of the renal arterioles. J Am Soc Nephrol 22:2156–2165

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kobayashi A, Mugford JW, Krautzberger AM, Naiman N, Liao J, McMahon AP (2014) Identification of a multipotent self-renewing stromal progenitor population during mammalian kidney organogenesis. Stem Cell Rep 3:650–662

    Article  CAS  Google Scholar 

  27. Hartman HA, Lai HL, Patterson LT (2007) Cessation of renal morphogenesis in mice. Dev Biol 310:379–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Short KM, Combes AN, Lefevre J, Ju AL, Georgas KM, Lamberton T, Cairncross O, Rumballe BA, McMahon AP, Hamilton NA, Smyth IM, Little MH (2014) Global quantification of tissue dynamics in the developing mouse kidney. Dev Cell 29:188–202

    Article  CAS  PubMed  Google Scholar 

  29. Oliver J (1968) Nephrons and kidneys: a quantitative study of development and evolutionary renal architectonics. Hoeber Medical Division, Harper & Row, New York

    Google Scholar 

  30. Hinchliffe SA, Sargent PH, Howard CV, Chan YF, van Velzen D (1991) Human intrauterine renal growth expressed in absolute number of glomeruli assessed by the dissector method and Cavalieri principle. Lab Invest 64:777–784

    CAS  PubMed  Google Scholar 

  31. Hoy WE, Douglas-Denton RN, Hughson MD, Cass A, Johnson K, Bertram JF (2003) A stereological study of glomerular number and volume: preliminary findings in a multiracial study of kidneys at autopsy. Kidney Int [Suppl.83]:S31–S37

  32. Kopan R, Chen S, Little M (2014) Nephron progenitor cells: shifting the balance of self-renewal and differentiation. Curr Top Dev Biol 107:293–331

    Article  CAS  PubMed  Google Scholar 

  33. Brown AC, Muthukrishnan SD, Oxburgh L (2015) A synthetic niche for nephron progenitor cells. Dev Cell 34:229–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen S, Brunskill EW, Potter SS, Dexheimer PJ, Salomonis N, Aronow BJ, Hong CI, Zhang T, Kopan R (2015) Intrinsic age-dependent changes and cell–cell contacts regulate nephron progenitor lifespan. Dev Cell 35:49–62

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yu J, Valerius MT, Duah M, Staser K, Hansard JK, Guo JJ, McMahon J, Vaughan J, Faria D, Georgas K, Rumballe B, Ren Q, Krautzberger AM, Junker JP, Thiagarajan RD, Machanick P, Gray PA, van Oudenaarden A, Rowitch DH, Stiles CD, Ma Q, Grimmond SM, Bailey TL, Little MH, McMahon AP (2012) Identification of molecular compartments and genetic circuitry in the developing mammalian kidney. Development 139:1863–1873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bertram JF, Douglas-Denton RN, Diouf B, Hughson MD, Hoy WE (2011) Human nephron number: implications for health and disease. Pediatr Nephrol 26:1529–1533

    Article  PubMed  Google Scholar 

  37. Al-Awqati Q, Gao XB (2011) Differentiation of intercalated cells in the kidney. Physiology (Bethesda) 26:266–272

    Article  CAS  Google Scholar 

  38. Blomqvist SR, Vidarsson H, Fitzgerald S, Johansson BR, Ollerstam A, Brown R, Persson AE, Bergström GG, Enerbäck S (2004) Distal renal tubular acidosis in mice that lack the forkhead transcription factor Foxi1. J Clin Invest 113:1560–1570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rojek A, Füchtbauer EM, Kwon TH, Frøkiaer J, Nielsen S (2006) Severe urinary concentrating defect in renal collecting duct-selective AQP2 conditional-knockout mice. Proc Natl Acad Sci USA 103:6037–6042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jeong HW, Jeon US, Koo BK, Kim WY, Im SK, Shin J, Cho Y, Kim J, Kong YY (2009) Inactivation of Notch signaling in the renal collecting duct causes nephrogenic diabetes insipidus in mice. J Clin Invest 119:3290–3300

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Hirose T, Mori N, Totsune K, Morimoto R, Maejima T, Kawamura T, Metoki H, Asayama K, Kikuya M, Ohkubo T, Kohzuki M, Takahashi K, Imai Y (2009) Gene expression of (pro)renin receptor is upregulated in hearts and kidneys of rats with congestive heart failure. Peptides 30:2316–2322

    Article  CAS  PubMed  Google Scholar 

  42. Burcklé CA, Jan Danser AH, Müller DN, Garrelds IM, Gasc JM, Popova E, Plehm R, Peters J, Bader M, Nguyen G (2006) Elevated blood pressure and heart rate in human renin receptor transgenic rats. Hypertension 47:552–556

    Article  PubMed  Google Scholar 

  43. Ichihara A, Kaneshiro Y, Takemitsu T, Sakoda M, Suzuki F, Nakagawa T, Nishiyama A, Inagami T, Hayashi M (2006) Nonproteolytic activation of prorenin contributes to development of cardiac fibrosis in genetic hypertension. Hypertension 47:894–900

    Article  CAS  PubMed  Google Scholar 

  44. Li W, Peng H, Mehaffey EP, Kimball CD, Grobe JL, van Gool JM, Sullivan MN, Earley S, Danser AH, Ichihara A, Feng Y (2014) Neuron-specific (pro)renin receptor knockout prevents the development of salt-sensitive hypertension. Hypertension 63:316–323

    Article  CAS  PubMed  Google Scholar 

  45. Kinouchi K, Ichihara A, Sano M, Sun-Wada GH, Wada Y, Kurauchi-Mito A, Bokuda K, Narita T, Oshima Y, Sakoda M, Tamai Y, Sato H, Fukuda K, Itoh H (2010) The (pro)renin receptor/ATP6AP2 is essential for vacuolar H+ −ATPase assembly in murine cardiomyocytes. Circ Res 107:30–34

  46. Oshima Y, Kinouchi K, Ichihara A, Sakoda M, Kurauchi-Mito A, Bokuda K, Narita T, Kurosawa H, Sun-Wada GH, Wada Y, Yamada T, Takemoto M, Saleem MA, Quaggin SE, Itoh H (2011) Prorenin receptor is essential for normal podocyte structure and function. J Am Soc Nephrol 22:2203–2212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Riediger F, Quack I, Qadri F, Hartleben B, Park JK, Potthoff SA, Sohn D, Sihn G, Rousselle A, Fokuhl V, Maschke U, Purfürst B, Schneider W, Rump LC, Luft FC, Dechend R, Bader M, Huber TB, Nguyen G, Muller DN (2011) Prorenin receptor is essential for podocyte autophagy and survival. J Am Soc Nephrol 22:2193–2202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ramkumar N, Stuart D, Calquin M, Quadri S, Wang S, Van Hoek AN, Siragy HM, Ichihara A, Kohan DE (2015) Nephron-specific deletion of the prorenin receptor causes a urine concentration defect. Am J Physiol Ren Physiol 309:F48–F56

    Article  CAS  Google Scholar 

  49. Guo Q, Wang Y, Tripathi P, Manda KR, Mukherjee M, Chaklader M, Austin PF, Surendran K, Chen F (2015) Adam10 mediates the choice between principal cells and intercalated cells in the kidney. J Am Soc Nephrol 26:149–159

    Article  CAS  PubMed  Google Scholar 

  50. Madsen KM, Clapp WL, Verlander JW (1988) Structure and function of the inner medullary collecting duct. Kidney Int 34:441–454

    Article  CAS  PubMed  Google Scholar 

  51. Pearce D, Soundararajan R, Trimpert C, Kashlan OB, Deen PM, Kohan DE (2015) Collecting duct principal cell transport processes and their regulation. Clin J Am Soc Nephrol 10:135–146

    Article  CAS  PubMed  Google Scholar 

  52. Cruciat CM, Ohkawara B, Acebron SP, Karaulanov E, Reinhard C, Ingelfinger D, Boutros M, Niehrs C (2010) Requirement of prorenin receptor and vacuolar H+−ATPase-mediated acidification for Wnt signaling. Science 327:459–463

    Article  CAS  PubMed  Google Scholar 

  53. Park JS, Valerius MT, McMahon AP (2007) Wnt/beta-catenin signaling regulates nephron induction during mouse kidney development. Development 134:2533–2539

    Article  CAS  PubMed  Google Scholar 

  54. Buechling T, Bartscherer K, Ohkawara B, Chaudhary V, Spirohn K, Niehrs C, Boutros M (2010) Wnt/Frizzled signaling requires dPRR, the Drosophila homolog of the prorenin receptor. Curr Biol 20:1263–1268

    Article  CAS  PubMed  Google Scholar 

  55. Karner CM, Chirumamilla R, Aoki S, Igarashi P, Wallingford JB, Carroll TJ (2009) Wnt9b signaling regulates planar cell polarity and kidney tubule morphogenesis. Nat Genet 41:793–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Stover EH, Borthwick KJ, Bavalia C, Eady N, Fritz DM, Rungroj N, Giersch AB, Morton CC, Axon PR, Akil I, Al-Sabban EA, Baguley DM, Bianca S, Bakkaloglu A, Bircan Z, Chauveau D, Clermont MJ, Guala A, Hulton SA, Kroes H, Li Volti G, Mir S, Mocan H, Nayir A, Ozen S, Rodriguez Soriano J, Sanjad SA, Tasic V, Taylor CM, Topaloglu R, Smith AN, Karet FE (2002) Novel ATP6V1B1 and ATP6V0A4 mutations in autosomal recessive distal renal tubular acidosis with new evidence for hearing loss. J Med Genet 39:796–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hirose T, Hashimoto M, Totsune K, Metoki H, Asayama K, Kikuya M, Sugimoto K, Katsuya T, Ohkubo T, Hashimoto J, Rakugi H, Takahashi K, Imai Y (2009) Association of (pro)renin receptor gene polymorphism with blood pressure in Japanese men: the Ohasama study. Am J Hypertens 22:294–299

    Article  CAS  PubMed  Google Scholar 

  58. Hirose T, Hashimoto M, Totsune K, Metoki H, Hara A, Satoh M, Kikuya M, Ohkubo T, Asayama K, Kondo T, Kamide K, Katsuya T, Ogihara T, Izumi S, Rakugi H, Takahashi K, Imai Y (2011) Association of (pro)renin receptor gene polymorphisms with lacunar infarction and left ventricular hypertrophy in Japanese women: the Ohasama study. Hypertens Res 34:530–535

    Article  CAS  PubMed  Google Scholar 

  59. Ramser J, Abidi FE, Burckle CA, Lenski C, Toriello H, Wen G, Lubs HA, Engert S, Stevenson RE, Meindl A, Schwartz CE, Nguyen G (2005) A unique exonic splice enhancer mutation in a family with X-linked mental retardation and epilepsy points to a novel role of the renin receptor. Hum Mol Genet 14:1019–1027

    Article  CAS  PubMed  Google Scholar 

  60. Hamada K, Taniguchi Y, Shimamura Y, Inoue K, Ogata K, Ishihara M, Horino T, Fujimoto S, Ohguro T, Yoshimoto Y, Ikebe M, Yuasa K, Hoshino E, Iiyama T, Ichihara A, Terada Y (2013) Serum level of soluble (pro)renin receptor is modulated in chronic kidney disease. Clin Exp Nephrol 17:848–856

    Article  CAS  PubMed  Google Scholar 

  61. Watanabe N, Morimoto S, Fujiwara T, Suzuki T, Taniguchi K, Mori F, Ando T, Watanabe D, Kimura T, Sago H, Ichihara A (2013) Prediction of gestational diabetes mellitus by soluble (pro)renin receptor during the first trimester. J Clin Endocrinol Metab 98:2528–2535

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ihor V. Yosypiv.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yosypiv, I.V. Prorenin receptor in kidney development. Pediatr Nephrol 32, 383–392 (2017). https://doi.org/10.1007/s00467-016-3365-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-016-3365-x

Keywords

Navigation